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ABSTRACT  

In summer Arctic, due to its ability to reduce the overall albedo of the ice surface, melt pond 

is an important feature for the mechanism study of sea ice surface melting. Currently, satellite 

remote sensing is main method of obtaining sea ice and melt pond in large scale, while the 

high-resolution shipborne optical images captured in situ reflect the “ground truth” of sea ice 

surface, served as an important supplement to satellite remote sensing. However, methods to 

automatically extract spatially distributed melt pond from a large shipborne sea ice imagery 

set still need to be developed. This article proposed an improved automated extraction 

scheme for ice surface features in shipborne imagery, named Oblique Ice Surface Features 

Automatic Extraction algorithm (O-ISFAE). The principles of Random Forest, Watershed 

Transformation and orthographic correction were utilized in this scheme. First of all, we 

elaborated on the working mechanism of the O-ISFAE algorithm. Then, taking CHINARE-

2018 shipborne imagery set as an application example, a training set (SSITS-2018) was 

created, and then a Random Forest classification model (SSIRF-2018) was constructed. 

Finally, the classification accuracy and applicability on CHINARE-2018 were tested with 

manual results as validation data. This study would play an important role in promoting the 

automated extraction of melt pond from high-resolution optical shipborne images in the 

future. 
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1 Introduction 

Melt pond is one of the most significant surface features in summer arctic, and plays an 

important role in ice surface albedo feedback [1-4]. Therefore, it is crucial to extract spatial 

distribution of melt ponds on ice surface for the studies of the mechanism of arctic sea ice 

melting mechanism. At present, the observations on sea ice and melt pond mainly rely on 

satellite remote sensing [5-10]. However, limited by cloud cover and similar brightness 

temperature characteristics [11], there were still certain biases and limitations in the retrieval 

on sea ice and melt pond with numerous efforts have done [12-17]. In the meantime, “ground 

truth” could effectively serve as validation and supplementary data for passive microwave 

retrieval, and even correct deviations caused by melt pond [18]. In addition to arriving at the 
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melt pond surface for measurement, in-situ observations were also carried out by helicopter 

& and aerial photography (less than 500m above the sea) [4, 19-24] and shipborne 

photography (less than 25m above the sea) [18, 25, 26]. Although limited field of view leads 

to sampling bias, its typical sub-meter high-spatial resolution makes it possible to realize 

detailed and accurate estimates of melt ponds (especially below 200 m2). 

At present, automatically extracting ice surface features, especially melt ponds, re-mains a 

technical problem [27]. Methods for distinguishing ice and water appeared relatively mature, 

including local thresholding [28], image analysis tool ASIS[29] and a series of image 

processing technologies under the framework of ARKTOS[30]. For melt ponds in sRGB 

images, the previous thresholding methods for gray-scale images are no longer available 

because of the injection of bluish components. Currently, methods for melt pond 

identification mainly based on two principles. One is based on red-green-blue (RGB) 

component [31], according to two facts: (1) melt ponds in aerial images usually appear blue, 

while ice and water appear white and black, respectively [32]; (2) compared with the ice, 

melt pond has higher brightness in blue component than in red component [33]. The 

manually supervised Band-Thresholding method (BT) adopted in CHINARE-2008 aerial 

images is also belongs to this kind of principle [18]. BT method, benefits from the ad-

vantages of naked eyes, is widely applied in Chinese National Arctic Research Expeditions 

(CHINAREs) [32-36]. The other is the classification based on pattern recognition, in which 

texture features, such as intensity and variance, of each image are calculated, and then a 

neural network [3] or a discriminant function [37] is determined using a training set formed 

by manual classification of images, then other images can be processed automatically by the 

trained network or function. In addition, in the Random Forest Classification model of the 

OSSP algorithm [38], a combination of attributes that describe the intensity and textural 

characteristics were selected, simultaneously integrated two principles mentioned above. 

Melt ponds were successfully extracted from four orthographic sea ice imagery resources 

(including high-resolution imagery from IceBridge (SIZRS) and UAVs, panchromatic and 

multispectral imagery from satellite imaging bandwidth (DigitalGlobe WorldView 4)) in the 

original OSSP algorithm, but not including oblique imagery. Among these methods, the 

recognition by naked eyes is still the optimal in accuracy, like the BT method. But its 

application in CHINAREs was still not well enough for its drawbacks like extremely low 

efficiency and utilization rate, as well as sampling errors. Therefore, our goal is to develop an 

automated scheme with accuracy comparable to naked eye, which can batch process high-

resolution shipborne oblique sea ice optical imagery of various ice conditions in the 

meantime. 

To address the issues mentioned above, a scheme (Oblique Ice Surface Features Automatic 

Extraction algorithm (O-ISFAE)) based on theories of previous studies was pro-posed in this 

paper. Firstly, in Section 2, we introduced the method framework of the O-ISFAE algorithm, 

and then elaborated the training method on shipborne sea ice imagery set. Secondly, the 

results of the O-ISFAE algorithm were stated in Section 3. Finally, the conclusions and 

limitations of the O-ISFAE algorithm were discussed in Section 4. 

2. Method 

2.1. Method Framework 

The flowchart of the scheme proposed in this paper was shown in Figure 1. This scheme was 

logically based on theoretical framework of the OSSP algorithm, but improved to be suitable 

for complicate shipborne sea ice imagery set, named the Oblique Ice Surface Features 



Automatic Extraction algorithm (O-ISFAE). There were three improvements were mainly 

made: firstly, the open-source codes were reorganized and modified and threshold values in 

training were resettled; secondly, a new definition called training set unit (TSU) was put 

forward and a process of selecting and merging was added; thirdly, orthographic correction 

was implemented after random forest classification. The pseudocode for the main algorithm 

process was shown in Algorithm 1. 

 

Figure 1. Flowchart of the O-ISFAE algorithm. 

 

Algorithm 1 O-ISFAE. 

PRE ← Preprocess 

B ← Binary Image convertion from PRE 

G ←

𝐺 =  𝐺𝑥
2 + 𝐺𝑦
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 ∗ 𝑩 

  

S ← Region Seed of B, the regional minimum calculated from G 

SEGMENTATION ← Watershed Transformation based on G and begin with S 

TS ← Training Set creation (Algorithm 2) 

CLASSIFICATION ← Random Forest Classification based on TS 

RWB ← Image with classified label (Red-OW, White-S&I, Blue-MP) 

O-RWB ← Orthographic Correction on RWB (Algorithm 3) 

SIC/MPF ← derived from O-RWB 

return SIC/MPF 



2.2. Procedure 

2.2.1. Step1: Preprocessing and Segmentation 

The results on every stage of the O-ISFAE algorithm was shown in Figure 2. The first step 

was preprocessing (Step 1.1). When we obtained the original imagery set, parts of imagery 

set were firstly excluded through visual browsing, as shown in Figure 2a and 2b. These 

excluded images referred to those affected by uneven illumination, distortion and other 

objective factors, which called invalid images. In these images, Sea ice surface information 

was corrupted or covered up. Then white balancing, contrast enhancing and moderate 

sharpening were implemented on valid images. The preprocessed shipborne image was 

shown in Figure 2c. 

Then we segmented the preprocessed image (Step 1.2). Before watershed segmentation, the 

preprocessed image was converted into the binary image, as shown in Figure 2d. Then the 

Sobel edge detection helped retrieving the boundaries between ice-water, ice-melt pond and 

melt pond-water. Based on the boundaries, gradient imageries were generated, as shown in 

Figure 2e. Gradient was meant to finding the local minimum points as original points in 

watershed segmentation. As shown in Figure 2f, watershed segmentation showed its robust 

and made a success on preprocessed oblique shipborne imagery. We found noises on ice floes, 

weak boundaries formed due to perspective of distant small regions, were ignored in 

watershed segmentation. This kind of noises were rare in orthographic imagery, but were 

common in shipborne imagery. 

 

 

Figure 2. The result example of each stage of the O-ISFAE algorithm during shipborne image 

processing. (a) was raw shipborne sea ice imagery set. (b) was valid shipborne imagery set. 

(c) was a pre-processed shipborne image, in which the red dotted rectangle area was selected 

for training. (d) was the binary image. (e) was the gratitude image. (f) was the segmented 

image. (g) tricolor classified image with color labels, in which white represented S&I, blue 

represented MP, and red represented OW. (h) was the trapezoidal tricolor image after 

orthographic correction of (g), with the true dimensions marked. In addition, ice floe and melt 

pond example were annotated, as well as their positions before and after orthographic 

correction. 

2.2.2. Step2: Training and Classification 



Training (Step 2.1) was the most important in the algorithm, because it would deter-mine the 

accuracy of classification. In training, supervisors need to determine each of the segmented 

object into three surface types: snow and ice (S&I), melt pond (MP) and open water (OW). 

Before determination, the relevant attributes of objects were calculated. After testing, the 

attributes of high contribution in shipborne imagery were found similar to those of aerial 

sRGB images, which were listed in Table 1. 

 

Table 1. The attributes selected for training in shipborne sea ice imagery. 

R band G band B band RGB variant Image intensity 

Mean* 

SD* 

Mean* 

SD* 

Mean* 

SD* 

(B - R)/(B + R)** 

Entropy* (B - G)/(B + G)** 

(G - R)/(2•B - G - R)** 

* Nicholas C. Wright et al. (2018) [38]; ** Miao et al. (2015) [39] 

To reduce unnecessary workload and further improve training efficiency, a single training set 

volume threshold of 1000 was set, which means classifying 1000 objects ended a training 

session. The generated single TS of 1000 was called a training set unit (TSU). This would 

increase the degree of freedom, allowed us to recombine and translate different TSUs as 

needed, for testing the accuracy of TS with various combination of TSUs. And it had been 

proven that, within a certain range, the more interested objects contained in training, the 

better the classification effect was. Therefore, we could try to select one of the sub-images 

containing MP for training, as shown in Figure 2c)  

The pseudocode for the training algorithm process was shown in Algorithm 2. Based on the 

generated classifier, all objects segmented from the image set could be classified (Step 2.2). 

After RF classification, a tricolor classified image with color labels was obtained, as shown in 

Figure 2b. White represented S&I, blue represented MP, and red represented OW. 

 

Algorithm 2 Training Set Creation. 

GUI ← the Graphical User Interface to classify unknown objects 

TSU ← training set unit of 1000 classified objects 

TS ← recombine and translate the TSUs together 

return TS 

2.2.3. Step3: Orthographic Correction and Calculation 

It should be noted that when photographing at an angle, the pixel fraction in Figure 2b was 

not the true area fraction. To extract the correct ice surface feature parameters, geo-metric 

correction was required on the tricolor classified images. The pseudocode for the geometric 

correction algorithm process was shown in Algorithm 3. The result after geometric correction 

was shown in Figure 2d. 

The size of image (m×n), equivalent focal length (f) and equivalent photo size (ps) were 

decided by CCD sensor. The height of camera (h) and incline angle of lens (a) were 



determined as soon as the CCD sensor was settled. Then the row and column resolution was 

calculated. In this way, the coordinates on sea ice surface (xx, yy) and actual area of each 

pixel were able to be calculated from image coordinates (x, y) by the formats[40] in 

Algorithm 3. It is worth noting that the true area of each row of pixels was the same for the 

Centered optical axis of lens, as the dotted line shown in Figure 2d. Besides, the top 300 rows 

of pixels in the image were excluded from the calculation due to severe distortion. 

The true size of the trapezoidal field of view had been calibrated, and the true area was 

73935m2. Once the geometric correction was completed, the ice surface feature parameters 

of interest, like sea ice concentration (SIC) and melt pond fraction (MPF), were able to be 

extracted. SIC is defined as the ratio of the sum of the areas of S&I and MP (the sum of the 

red and blue areas in (d)) to the entire trapezoidal area, while MPF is defined as the ratio of 

the area of MP (the blue area in (d)) to the entire trapezoidal area. 

 

Algorithm 3 Orthographic Correction. 

m,n ← size of image m×n 

thN ← row number less than thN are excluded 

h ← height of camera from sea surface(m) 

f ← equivalent 35mm focal length(m) 

a ← incline angle of lens(radians) 

ps ← equivalent 35mm photo size(m) 

rr,cr ←  

R/W/B ← generates a binary image with a foreground color of OW/S&I/MP 

x,y ← image coordinates x,y 

xx,yy ←  

          for  

dx,dy ←  

          for  

dxy ←  for  

O-RWB ← generate Orthographic Corrected RWB image 

return O-RWB 

 

3. Results 

With SSIRF-2018, we test the applicability of SSIRF-2018 on SSIIS-2018. In the test, 500 

images were randomly selected from SSIIS-2018 as a sample (S), representing the 

composition of the entire SSIIS-2018. Six categories of images were summarized through 

visual interpretation. The composition of the entire SSIIS-2018 could be inferred based on the 

proportion of images in each category in S. Extracted a certain number of images from each 

of the six categories as test set samples (TSs I-VI). Then evaluated the comprehensive 



performance of SSIRF-2018 on TSs I-VI. 

Considering the proportion of S&I, MP, and OW, as well as the relationship between ice 

surface conditions and other surface types, all images in S could be divided into the six 

categories as following:  

1. Category I: S&I+MP (Snow, Ice and Melt Pond). There was only snow, ice and melt ponds 

(occupy about 10% in S); 

2. Category II: S&I+MP+OW (Snow, Ice, Melt Pond and Open Water). The three main ice 

surface types were all exit at the same time, which was the most common case (about 50% in 

S); 

3. Category III: S&I+OW (Snow, Ice and Open Water). There was only snow, ice and water 

(about 30% in S). 

4. Category IV: S&I+SI+OW (Snow, Ice, Submerged Ice and Open Water). There was typical 

submerged ice, one side of which was ice and the other side was water (about 4% in S); 

5. Category V: S&I+MTP+OW (Snow, Ice, Melt-Through Pond and Open Water). This kind 

of image contained many melt ponds, but almost were melt-through ponds, whose color were 

similar to open water (about 4% in S); 

6. Category VI: C-CI&TP (Complex-Crushed Ice, Tiny Pond and Open Water). These images 

were tough to process, not only by algorithm, but also by human. There were large areas of 

brush ice and many very small melt ponds, which made ice surface over-complicated (about 

2% in S). 

 

Table 2. The actual area proportions of S&I, MP, and OW extracted from typical images of 

six categories (Category I-VI) using BT method and the O-ISFAE algorithm. ΔI, ΔP and ΔW 

represented the difference between BT and O-ISFAE results, respectively. 

Category 
Time(d/m/y 

h/m) 

Latitude(°N),  

Longitude(°W) 
Method 

S&I 

(%) 

ΔI 

(%) 

MP 

(%) 

ΔP 

(%) 

OW 

(%) 

ΔW 

(%) 

Category 

I 

02/08/2018 

19:33 
74.62, 168.10 

BT 

O-

ISFAE 

92.5 

93.6 
1.1 

4.6 

3.8 
-0.8 

2.9 

2.6 
-0.3 

Category 

II 

09/08/2018 

03:03 
77.76, 157.34 

BT 

O-

ISFAE 

86.5 

85.5 
-1.0 

0.3 

0.2 
-0.1 

13.2 

14.3 
1.1 

Category 

III 

26/08/2018 

14:36 
83.63, 159.79 

BT 

O-

ISFAE 

98.4 

98.6 
0.2 

0.0 

0.0 
0.0 

1.6 

1.4 
-0.2 

Category  

IV 

26/08/2018 

16:01 
83.53, 159.94 

BT 

O-

ISFAE 

75.3 

77.6 
2.3 

0.3 

0.1 
-0.2 

24.4 

22.3 
-2.1 

Category 

V 

11/08/2018 

01:48 
79.25, 168.87 

BT 

O-
61.5 -0.1 0.2 -0.2 38.3 0.3 



ISFAE 61.4 0.0 38.6 

Category 

VI 

01/08/2018 

16:18 
74.84, 159.16 

BT 

O-

ISFAE 

64.4 

64.6 
0.2 

0.5 

0.2 
-0.3 

35.1 

35.2 
0.1 

 

 

Figure 3. Typical images ((a), (d), (g), (m), (p), (s)) of six categories (Category I-VI) were 

processed using BT method ((b), (e), (h), (n), (q), (t)) and O-ISFAE algorithm ((c), (f), (i), (o), 

(r), (u)), respectively. In addition, spatiotemporal information was annotated in typical images, 

and the actual area proportions of S&I, MP, and OW were annotated in the tricolor images. (j-



l) were the gray level histogram of RGB channel of (m), and the dark gray and green 

rectangle shadows in (j-l) represented the gray line and green line region in (m). These two 

regions were transition types, the green line region was similar to SI and the gray line region 

was similar to TI, significantly the mix area reported the overlap interval of gray value of two 

transition types in RGB channel. 

 

Each representative image was selected from six categories and then was processed by BT 

method and the O-ISFAE algorithm, as shown in Figure 3a-I and m-u. Intuitively, the O-

ISFAE algorithm could accurately classify S&I, MP, and OW in Category I-III, as shown in 

Figure 3a-i. However, the classification accuracy of Category IV-VI was slightly poor, as 

shown in Figure 3m-u. In addition, to quantify the classification results, we calculated the 

actual area proportions of S&I, MP, and OW in the tricolor images, and calculated the 

differences, as ΔI, ΔP and ΔW in Table 2. If ranking six categories based on ΔI, ΔP and ΔW 

by low to high, Category III was the first with the integrated minimum of ΔI 0.2% and ΔW -

0.2%, which indicated that the O-ISFAE algorithm could effectively classify S&I and OW in 

shipborne images, as shown in Figure 3g-i. Next category was Category VI, followed by 

Category V, Category I, Category II, and Category IV. Although Category VI and Category V 

were ranked before Category I and Category II, it was evident that the classification results 

were not as accurate as the latter two categories. This was because the difference was mainly 

in the MP, and the proportions of the MP after geometric correction was very small, even two 

orders of magnitude different from those of S&I and OW. The surface conditions in Category 

VI were complex, and even the BT method under manual supervision was difficult to handle, 

as shown in Figure 3s. Due to limited image information, some areas were difficult to 

determine which main surface type they belong to. In this case, although the difference in MP 

was small as -0.3%, the visual comparison in Figure 3t and u could better show the 

differences in detail between two methods. As for Category V, there was a typical MTP, as 

shown in Fig. 3(p). The BT method could label the MTP with manual supervision, but in the 

automated O-ISFAE algorithm MP and OW could not be distinguished, resulting in an 

underestimation of MP by 0.2%, as shown in Figure 3q and r. Category I had a maximum 

difference of 1.1% on S&I, which slightly overestimated by the O-ISFAE algorithm, while 

underestimating 0.8% on MP. It was observed that few pixels were classified as OW in 

Category I, in which S&I and OW were mainly focused on, thus belonged to noise, as shown 

in Figure 3b and c. Category II contains three main surface types, and the results showed a 

relatively large difference of -1.0 and 1.1 on S&I and OW, respectively. In contrast to 

Category I, it slightly underestimated S&I and slightly overestimated OW, as shown in Figure 

3e-f. The difference on MP was not significant between Category I and Category II, in both 

of which MP were slightly underestimated by the O-ISFAE algorithm. Category IV did not 

have a typical MP, but there was obvious SI, as shown in Figure 3m. As explained in Section 

3, SI was also classified to MP. The O-ISFAE algorithm classified less SI than the BT method, 

resulting in an underestimation of 0.2% in MP, as shown in Figure 3n and o. This was 

because some surfaces were in the transition period from dark TI to blue SI. When querying 

the channel grayscale values, it was found that the grayscale interval overlapped severely and 

the optical feature differentiation was not clear. The overlapping interval corresponded to the 

RGB channel (R 103-113, G 137-159, B 156-180), as shown in the mix section of Figure 3j-l. 

When approaching TI, it was classified to S&I in the O-ISFAE algorithm, while when 

approaching SI, it was classified to MP. However, this kind of surface types in transition 

could be recognized in the BT method with manual supervision, by visually interpreting in 

conjunction with the ice surface conditions in the image. Overall, for Category I-III, the 



results calculated by the O-ISFAE algorithm were highly consistent with the BT method 

results, with the highest difference not exceeding 1.1%. For Category IV and Category V, the 

results calculated by the O-ISFAE algorithm were basically consistent with the results of the 

BT method, with the highest difference not exceeding 2.3%. For Category VI, although the 

difference was not significant, the ice conditions were too complex, and both methods had 

poor effects, which had low reference significance. 

In addition, six confusion matrices were drawn to evaluate the classification accuracy of the 

O-ISFAE algorithm on typical images of six categories, and further indicators were calculated 

to quantify the evaluation of classification accuracy. 

4. Conclusions 

Based on theories of the OSSP algorithm proposed by Nicholas C. Wright et. al. [38], a 

scheme towards shipborne imagery, Oblique Ice Surface Features Automatic Extraction 

algorithm (O-ISFAE), was proposed in this paper. Taking the CHINARE-2018 shipborne 

image set as an example, the optimal volume of training set was determined to be 84000 

based on the variation of six parameters. We created a personalized training set SSITS-2018 

and constructed a RF model SSIRF-2018 with 100 decision trees and unlimited depth 

extension. 

Six categories of images were summarized from the CHINARE-2018 shipborne image set. 

The classification accuracy and applicability of SSIRF-2018 on these six categories of images 

were tested and evaluated. Using the BT method results as validation data, in or-der to 

quantify the comparative analysis results, confusion matrices were drawn and multiple 

secondary and tertiary evaluation indicators were calculated. It was found that ACC and κ of 

Category I-III, totally accounting for 90% of the CHINARE-2018 shipborne image set, were 

above 95% and 0.89, respectively. In fact, apart from Category VI (ACC 89%, κ 0.79), all 

categories ACC and κ reached above 94% and 0.89 respectively. However, Category VI, 

accounting for less than 2% of the CHINARE-2018 shipborne image set, were also difficult 

to process by the BT method that rely on human naked eye. It indicated that the results of the 

O-ISFAE algorithm were highly consistent with those of the BT method, suitable for 98% of 

CHINARE-2018 shipborne image set. In addition, the processing efficiency of the O-ISFAE 

algorithm was about 17 times that of the BT method (with an average of 14s/sheet for the O-

ISFAE algorithm and 180s/sheet for the BT method). 

Future algorithms will not be limited to three surface types: S&I, MP, and OW. Furthermore, 

they will include shadows (combined with shooting angles and solar zenith angles, which 

may be used to obtain information on ice ridge heights), submerged ice (boundary of floating 

ice, distinguished from melt ponds), bright MP (shallower melt ponds), dark MP (deeper melt 

ponds) and MTP. Extracting these refined surface types from the entire shipborne image set 

will be a new challenge. 
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