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ABSTRACT 

 

When ships navigate through ice-covered waters they may interact with the ice floes, either by direct 

ship-ice collisions or by disturbing the floes, indirectly causing ice-ice collisions. Numerical 

simulations used in ship navigation in ice and to develop autopilots for these situations require physical 

models of such collisions that account for the multitude of hydrostatic and hydrodynamic phenomena 

present. So far, the kinematics of collisions between floating objects has only been considered under 

the assumption that the coupling between axes for hydrodynamic effects can be neglected. Here we 

introduce a hydrodynamics-enabled collision model for floating objects that allows the consideration 

of a 6 × 6 added mass tensor with up to 36 distinct entries. Collisions are treated as instantaneous 

events in an impulse-based framework. A parameter study reveals significant differences between our 

model and a model with neglected hydrodynamic coupling, even at low to moderate values of the 

added mass coupling terms. The prediction of the velocity changes in real-world collision events 

between a floating dock and a model scale platform supply vessel show that our model captures the 

correct trends for the linear modes of motion.  
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INTRODUCTION 

 

Kinematic simulations try to model and thus predict the motion of objects in space over time. In 

multibody kinematic simulations the influence of interactions between multiple objects on their 

individual motion is of central interest. Direct collisions are a very common type of interaction and 

thus collision models are a crucial component of such multibody kinematic simulations. Generally, 

collision models can be either instantaneous (impulse-based) or continuous (force-based) and either 

include or neglect frictional effects (Seifried et al. 2010; Pfeiffer and Glocker 1996). 

 

For ships and other floating objects hydrostatic and hydrodynamic effects need to be modelled for a 

high-fidelity simulation (Fossen, 2002). The governing equations for collision responses are dominated 

by mass and moment of inertia, thus added mass is the crucial hydrodynamic effect that needs to be 

included in a collision model for ships and floating objects (Liu and Soares, 2023). 

 

Previous work has mostly focused on deformation and damage due to collisions between floating 

structures. Thus, continuous collision models were used, and kinematic accuracy was not the major 

concern of these studies (Liu and Soares, 2023). For the navigation of ships in ice with only safe 

interactions, the rigid body assumption (i.e. neglectable deformations) may hold and high-fidelity 

kinematic models are desirable, since they can be used for path planning, development of autopilots, 

etc. (Fossen, 2002). Baraff and Witkin (1997) provided a detailed general introduction to the 



computational approach of resolving collisions in a 6 degree of freedom DOF impulse-based 

framework, without considering hydrodynamic effects.  

 

Peterson (1982) described a 3 DOF, frictionless, continuous collision model focused on the assessment 

of deformations that considers a system with decoupling between the surge, and sway-yaw subsystems 

and includes the added mass for both subsystems. Liu and Amdahl (2010) introduced frictional effects 

to an otherwise similar model and applied it to ship-iceberg collisions. Song et al. (2016) focused on 

ice-structure interactions as well, with an emphasis on sway added mass. Their model is the first to 

introduce a proximity dependence of the added mass during the collision, as theoretically expected 

(Korotkin, 2009). Yu et al. (2016) described a collision model extended to 6 DOF that uses a diagonal 

added mass tensor. Yu et al. (2016b) used state of the art computational fluid dynamics methods to 

access the damage of ship-ship collisions and ship grounding events in 6 DOF, still considering solely 

a diagonal added mass tensor in their simulations. Recently, Liu and Amdahl (2019) unified the 

theoretical contributions of previous work on 6 DOF ship-ship collisions. Their work includes different 

frictional effects and hydrodynamic effects. The latter are modelled with constant added mass factors 

that do not include any coupling between the different axes. To the best of our knowledge, a full 6 × 6 

added mass tensor has not yet been used in any collision resolution method.  

 

THEORY DERIVATION 

 

For the derivation of our new, original collision response model using the full added mass tensor an 

inelastic, instantaneous and frictionless interaction between the colliding objects is assumed.   

 

Some care must be taken with respect to the frames of reference used during the following derivation. 

Linear velocities 𝐯 and angular velocities 𝛚 of a given object are expressed by the motion of the frame 

of reference of the object (fixed at the respective origins) with respect to a world frame (which is 

assumed to be inertial). Independent of the particular choice of origin 𝒪, the velocity 𝐯𝐩 of a point 𝐩 

of an object with respect to the origin is given by   

𝐯𝐩 = 𝐯𝓞 + 𝛚 × 𝓞𝐩 (1) 

with the left superscript indicating the frame of reference of a variable. The system inertia tensor 

𝐌 = 𝐌RB + 𝐌A (2) 

can be separated into a rigid body part 𝐌RB and the hydrodynamic added mass part 𝐌A. When looking 

at a rigid body in water, the choice of the origin of the coordinate frame is particularly important. The 

following derivation of the proposed collision resolution strategy relies on choosing the center of 

gravity CG as origin. With this choice, the rigid body system inertia matrix takes the favourable shape 

 CG𝐌RB = [
𝑚𝐈3×3 𝟎3×3

𝟎3×3   CG𝚪
] (3) 

with the inertia tensor CG𝚪 with respect to CG. Since the added mass depends on the geometry of the 

floating object, no such favourable shape can be exploited for the added mass part of the system inertia 

tensor. The appropriate transformations to change the origin of a system inertia tensor or its 

components to CG to then use the here proposed collision resolution strategy is given in Fossen (2002).  
 

The equations of motion for floating objects in vector notation with CG as origin (from hereon forward 

the superscript for CG as the chosen origin for 𝐌 is implied for clarity of equations) can be written as 

𝐌[
d𝐯/d𝑡
d𝛚/d𝑡

] + 𝐂(𝐯,𝛚) [
𝐯
𝛚

] + 𝐃(𝐯,𝛚) [
𝐯
𝛚

] = [
𝐟
𝛕
]  (4) 

with 𝐂 the Coriolis-centripetal tensor, 𝐃 the damping tensor and a vector containing the forces 𝐟 and 

moments 𝛕. Forces and moments consist of control inputs, ballast pre-trimming, environmental 

disturbances and the negative of the gravitational and buoyancy forces and moments, which sum up to 

[𝐟 𝛕]⊤ (Fossen, 2002). 



This equation simplifies significantly under the assumption of an instantaneous collision. All 

aforementioned forces and moments tend to 𝟎 for an infinitesimal time interval. The same is true for 

[𝐯 𝛚]⊤ which can be written as differential [d𝐱/d𝑡 d𝛘/d𝑡]⊤ with changes in position 𝐱 and 

orientation 𝛘 both tending towards 𝟎 during an infinitesimal time interval. Finally, with the assumption 

of a single, infinitesimal points of contact, we can set 𝛕 = 𝟎 and use the simplified equation 

𝐌[
d𝐯/d𝑡
d𝛚/d𝑡

] = [
𝐟
𝟎
]  (5) 

which describes the motion of each single collision partner at the instant of collision. Integration with 

respect to time yields the relationship between collision impulse 𝐣 and velocity changes Δ𝐯 and Δ𝛚 as 

[
Δ𝐯
Δ𝛚

] = 𝐌−1 [
𝐣
𝟎
] = [

𝐌11 𝐌12

𝐌22 𝐌22
]
−1

[
𝐣
𝟎
] = [

(𝐌11 − 𝐌12𝐌22
−1𝐌21)

−1

−𝐌22
−1𝐌21(𝐌11 − 𝐌12𝐌22

−1𝐌21)
−1] 𝐣  (6) 

with the last decomposition using block matrix identities and the fact that the impulse vector is part 𝟎.  

 

Since the system inertia tensor with CG as origin CG𝐌 is used, we know that  CG𝐌RB,21 = 𝟎3×3. Thus, 

only 𝐌A contributes to Δ𝛚 in equation 6 and we can separate the change in angular velocity 

Δ𝛚 = Δ𝛚geo + Δ𝛚A  (7) 

into a geometric part Δ𝛚geo and an added mass part Δ𝛚A, with the latter given by equation 6. 

 

Following Baraff and Witkin (1997) the geometric portion is given by 

Δ𝛚geo = 𝛚⃗⃗⃗ geo − 𝛚⃗⃗⃗⃖geo = 𝐌22
−1( CG𝐩 × 𝐣)  (8) 

with the right-pointing arrow indicating the post- and the left-pointing arrow indicating the pre-

collision quantity. Writing the collision impulse as a scalar multiplied by the contact normal (𝐣 = 𝑗 CG𝐧) 

the collision impulse can be worked out from 

𝐯⃗ CG = 𝐯⃗⃖CG + (𝐌11 − 𝐌12𝐌22
−1𝐌21)

−1𝑗 CG𝐧  

𝛚⃗⃗⃗ CG = 𝛚⃗⃗⃗⃖CG − 𝐌22
−1𝐌21(𝐌11 − 𝐌12𝐌22

−1𝐌21)
−1𝑗 CG𝐧 + 𝐌22

−1( CG𝐩 × 𝑗 CG𝐧) 
(9) 

which is the combination of equations 6-8 and finally used to calculate the post collision velocities. 

 

Substituting equation 9 into equation 1 for the post-collision velocity yields 

𝐯⃗ 𝐩 = 𝐯⃗⃖CG + (𝐌11 − 𝐌12𝐌22
−1𝐌21)

−1𝑗 CG𝐧  

         +(𝛚⃗⃗⃗⃖CG − 𝐌22
−1𝐌21(𝐌11 − 𝐌12𝐌22

−1𝐌21)
−1𝑗 CG𝐧 + 𝐌22

−1( CG𝐩 × 𝑗 CG𝐧)) ×  CG𝐩 

     = 𝐯⃗⃖CG + 𝛚⃗⃗⃗⃖CG ×  CG𝐩 + (𝐌11 − 𝐌12𝐌22
−1𝐌21)

−1𝑗 CG𝐧 

          + (−𝐌22
−1𝐌21(𝐌11 − 𝐌12𝐌22

−1𝐌21)
−1𝑗 CG𝐧 + 𝐌22

−1( CG𝐩 × 𝑗 CG𝐧)) ×  CG𝐩  

     = 𝐯⃗⃖𝐩 + 𝑗((𝐌11 − 𝐌12𝐌22
−1𝐌21)

−1 CG𝐧   

         +(𝐌22
−1( CG𝐩 ×  CG𝐧) − 𝐌22

−1𝐌21(𝐌11 − 𝐌12𝐌22
−1𝐌21)

−1 CG𝐧) ×  CG𝐩)  

     = 𝐯⃗⃖𝐩 + 𝑗 CG𝐜𝑗   

(10) 

which, despite the number of terms to consider, is just a linear expression connecting the pre- and post-

collision velocities of a point with a scalar impulse multiplied by a vector constant  CG𝐜𝑗 as indicated 

in the last line of equation 10. The sign in the equation must be different for the two collision partners 

and which one is treated as addition and which one as subtraction depends on the convention chosen. 

Here, the contact normal is set to be pointing outwards from object 𝑎 and thereby addition is chosen 

for object 𝑎 and subtraction for object 𝑏. 

 

The pre- and post-collision velocities are obtainable from the state of the objects before or after the 

collision according to equation 1 knowing the point of contact and the contact normal as 

𝑣⃖rel =  CG𝐧 ⋅ (𝐯⃗⃖𝐩,𝑎 − 𝐯⃗⃖𝐩,𝑏)   

𝑣 rel =  CG𝐧 ⋅ (𝐯⃗ 𝐩,𝑎 − 𝐯⃗ 𝐩,𝑏)  
(11) 



The post-collision quantities are obviously unknown, but the relative velocities pre- and post-collision 

are connected by the coefficient of restitution 𝑐  

𝑣 rel = −𝑐 ⋅  𝑣⃖rel   (12) 

so, we can equate 

𝑣 rel =  CG𝐧 ⋅ (𝐯⃗⃖𝐩,𝑎 + 𝑗 CG𝐜𝑗,𝑎 − 𝐯⃗⃖𝐩,𝑏 + 𝑗 CG𝐜𝑗,𝑏) =  𝑣⃖rel + 𝑗 CG𝐧 ⋅ ( CG𝐜𝑗,𝑎 +  CG𝐜𝑗,𝑏) = −𝑐 ⋅  𝑣⃖rel    (13) 

which can be solved for the impulse as 

𝑗 = −(1 + 𝑐) 𝑣⃖rel /  
CG𝐧 ⋅ ( CG𝐜𝑗,𝑎 +  CG𝐜𝑗,𝑏)  

With CG𝐜𝑗,𝑎|𝑏 = (𝐌11,𝑎|𝑏 − 𝐌12,𝑎|𝑏𝐌22,𝑎|𝑏
−1 𝐌21,𝑎|𝑏)

−1
 CG𝐧 + (𝐌22,𝑎|𝑏

−1 ( CG𝐩𝑎|𝑏 ×  CG𝐧) 

                              −𝐌22,𝑎|𝑏
−1 𝐌21,𝑎|𝑏(𝐌11,𝑎|𝑏 − 𝐌12,𝑎|𝑏𝐌22,𝑎|𝑏

−1 𝐌21,𝑎|𝑏)
−𝟏

 CG𝐧) ×  CG𝐩𝑎|𝑏 

(14) 

 

With an equation for 𝑗, the procedure to resolve a collision is as follows, assuming the coefficient of 

restitution is known (or set by the user): 

1. Transform system inertia matrix to CG, if not already known w.r.t CG. 

2. Gather geometric information about collision: contact point w.r.t. CGs of each body  

( CG𝐩𝑎 and CG𝐩𝑏) and contact normal CG𝐧. 

3. Calculate pre-collision relative velocity  𝑣⃖rel according to equations 1 and 11. 

4. Calculate scalar collision impulse 𝑗 according to equation 14. 

5. Calculate linear velocity change Δ𝐯 and added mass angular velocity change Δ𝛚A according 

to equation 6 and add geometric change of angular velocity Δ𝛚geo (Eq. 7-8) to angular velocity 

change and update velocities. 

 

METHODS 

 

For the parameter study, the WAMIT v7 computational package (WAMIT, 2025) was used to determine 

the added mass tensor of a cube with 𝑎 = 10 cm side length and 𝑚 = 1 kg mass (i.e. just fully 

submerged, z-position of CG at −5 cm w.r.t. waterline) in wave-free conditions. The cube’s moment 

of inertia in each axis was determined as 𝐼 = 1/6𝑚𝑎2 =  1/600 kg ⋅ m2, yielding a radius of gyration 

of 𝑟𝑔  = √𝐼/𝑚 ≈ 0.040825 m. The quadrilateral mesh of the cube was procedurally generated from 

squares with 1 cm2 resolution. 

 

Collisions between two just fully submerged cubes of unit mass were studied, determining the rigid 

body system inertia tensor as diag([1 kg, 1 kg, 1 kg, 1/600 kg ⋅ m2, 1/600 kg ⋅ m2, 1/600  kg ⋅ m2]). 
The diagonal elements of the added mass tensor were determined using computer simulation with 

WAMIT as diag([0.525 kg, 0.525 kg, 0.345 kg, 0.00170 kg ⋅ m2, 0.00170 kg ⋅ m2, 0.000417 kg ⋅ m2]). 
The off-diagonal terms of the added mass tensor were varied in percent of the minimum value of the 

two diagonal values of the added mass tensor, that were coupled in a particular axis (e.g. for 𝑀𝐴,15 at 

1%, a off diagonal value of 1% ⋅ min(0.525, 0.00170) was chosen). Note that these are not the actual 

off-diagonal values of a just fully submerged cube, but values artificially added to the added mass 

tensor. One may imagine massless fins being attached to the cubes causing the particular coupling 

resulting in the assumed off-diagonal elements of the added mass tensors. 

 

Due to the complexity of the space of possible geometric arrangements, a particularly interesting subset 

of it was studied here. The faces of the cubes containing the contact point were assumed to coincide 

with the 𝑥𝑧-plane, while the contact point was chosen from the positive 𝑥-axis only (Fig. 1). Note that 

a single point of contact was assumed, despite the two faces being in closest proximity. One may 

assume an infinitesimal distance between the two faces with an equally infinitesimal bump in the 

surface at the contact point. From this arrangement follows the fixed contact normal  𝑛 =  [0, 1, 0].  



Further, the first body was assumed to be at rest (i.e. the struck object) with its CG at [0, −1, 0], while 

the position of the second body, and thus its CG, was varied along the positive 𝑥-axis with a 𝑦-offset 

of +1 (Fig. 1). Unity relative velocity and coefficient of restitution CoR values were set. To satisfy the 

velocity value, a velocity vector of [0, −1, 0, 0, 0, 0] of the second body (i.e. the striking object) was 

chosen. Note that only normal and not tangential components of the velocity are relevant for the 

collision resolution, as such only the linear velocity along the 𝑦-axis and the angular velocities around 

the 𝑥- and 𝑧-axis determine the relative velocity. 

Figure 1: Different geometric situations as varied during the parameter study, with the struck body in 

blue and the striking body in orange. The velocity vector (red) is anchored at the contact point. (a) 

CGs and contact point without offset and colinear with velocity vector, (b) offset of contact point, (c) 

offset of striking body, (d) striking body and contact point offset. 

 

For the experimental study, a generic model scale platform supply vessel PSV (Fig. 2a) was set to 

collide with a floating dock (Fig. 2b) and their pose in all 6 DOF recorded at a frequency of 50 Hz 

using a Qualisys motion capture system. The captured pose data was corrected by a known offset to 

the CG of the PSV and dock, respectively. The physical properties of the PSV and dock are shown in 

Table 1. The model was positioned relative to the floating dock using a custom control software and 

accelerated towards the dock until a steady speed at the commanded forward thrust of either 1 N 

(0.13 ± 0.01 m/s) or 5 N (0.32 ± 0.02 m/s) was reached. The thrust was cut shortly before impact 

to let the collision evolve naturally. The PSV was positioned such that it would hit the dock with its 

bow at either the centre C, halfway between centre and edge CE or the edge E (Fig. 2b). For each 

combination of forward thrust and collision point the experiment was repeated 3 times. Finally, for 3 

experimental runs with 5 N forward thrust and the collision point set to CE each a weight of either 

10 kg or 20 kg was added to the dock, resulting in a total of 24 experimental runs. 

Figure 2: (a) The PSV model, (b) floating dock with position of impact marked. 

 

Table 1: Physical properties of PSV and dock 

Property PSV Floating dock 

Displacement / kg 70.047 44.95 

Beam / m 0.45 1.0 

Length overall / m 2.0 1.0 

Height / m 0.4 0.4 

CG to waterline / m 0.042 -0.15 

(a) (b) (c) (d) 

(a) 

(b) 



A linear function was fitted to the recorded position and orientation time traces shortly before and after 

the collision to extract the pre- and post-collision velocities including their uncertainties from the fit’s 

slopes (Fig. 3). The time range for each fit was manually set to a value between 0.1 −  4 s to select a 

visibly linear region of the time trace. The intersections of the linear fits for the pre- and post-collision 

pose were used as an estimate of CG and pose during the time of impact. The uncertainty of CG was 

calculated by error propagation from the fits’ uncertainties. 
 

 
Figure 3: Examples of selected data ranges and linear fits to a single DOF for a linear mode (a, b) 

and an oscillatory mode (c, d) both pre- (a, c) and post-collision (b, d). 
 

Surface meshes of the floating dock and PSV were positioned in a CAD software according to the 

previously determined pose at the time of impact and an intersection between the two meshes was 

calculated. The first point of contact on the intersection was manually estimated and selected and the 

face normal at the contact point extracted from the mesh. In case of an empty intersection the point 

closest to the PSV model on the dock’s mesh was selected. The error of the manually selected point of 

contact was assumed to be 0.1 m per axis. The contact normal was assumed to have a standard 

deviation of its orientation in space of 5° per axis. 

 

WAMIT v7 was used with the same settings as described before to determine the added mass tensor 

of PSV and floating dock. The previously used triangular meshes were smoothed and turned into 

quadrilateral meshes to be usable by WAMIT.  To determine the moment of inertia and consequently 

the radii of gyration according to 𝑟𝑔  = √𝐼/𝑚 the floating dock was approximated by a 

1 m × 1 m × 0.4 m box (𝑤 × 𝑑 × ℎ), which yields  𝐼𝑥 = 𝐼𝑦 = 1/12𝑚(𝑑|𝑤2 + ℎ2) = 4.345 kg ⋅ m2 

and 𝐼𝑧 = 1/12𝑚(𝑑2 + 𝑤2) = 7.492 kg ⋅ m2. The PSV was modelled as a cylinder with length          

𝑙 = 2 m and radius 𝑟 = 0.25 m, yielding moments of inertia of 𝐼𝑥 = 1/2𝑚𝑟2 = 2.19 kg ⋅ m2 and  

𝐼𝑦 = 𝐼𝑧 = 1/12𝑚(3𝑟2 + 𝑙2) = 24.44 kg ⋅ m2. A standard deviation of 1% of each value was assumed 

for the system inertia tensor of the floating dock and of 2% for the PSV due to the more corse 

approximation of the PSV’s shape for the determination of the moment of inertia. 

 

The CoR was determined based on the kinetic energy 𝐸 of the system (i.e. both objects) according to 

𝑐 = √𝐸𝑝𝑜𝑠𝑡/𝐸𝑝𝑟𝑒 = √(𝐸𝑝𝑜𝑠𝑡,𝑑𝑜𝑐𝑘 + 𝐸𝑝𝑜𝑠𝑡,𝑃𝑆𝑉)/(𝐸𝑝𝑟𝑒,𝑑𝑜𝑐𝑘 + 𝐸𝑝𝑟𝑒,𝑃𝑆𝑉)  where the kinetic energy of 

each floating object at each time is given by the sum of the kinetic energy of the rigid body and the 

fluid as  𝐸𝑖 = 𝑣𝑖
⊤𝑀𝑅𝐵,𝑖𝑣𝑖 + 𝑣𝑖

⊤𝑀𝐴,𝑖𝑣𝑖. 

 

The uncertainty of the theoretical predictions was estimated by a Monte-Carlo approach with 10000 

runs each. A random value according to a normal distribution with centre and standard deviation equal 

to each input value and its estimated error was drawn and used as input to the algorithm. The standard 

deviation of the output of all runs is the estimate of the error propagation result through the algorithm. 

 

RESULTS 

 

Parameter Study 

 

To analyze the influence of the off-diagonal elements in the added mass tensor on the collision response 

(i.e. the velocity changes upon a collision) a parameter study was conducted. 

(a) (b) (c) (d) 



From equation 14 it follows that there are four major factors that define the velocity changes upon a 

collision. The relative pre-collision velocity and the CoR are both scalar factors and as such were set 

to unity in the parameter study, as they simply scale the velocity change equally along all axes. The 

other factors are the geometric arrangement of the colliding bodies and the values of the system inertia 

tensors. 

 

Figure 4 shows the baseline (i.e. all off-diagonal values of the added mass tensor are 0) of the parameter 

study as a function of the different geometric arrangements over the full range covered. Note that due 

to the chosen restrictions of the geometric arrangements, only velocity changes in the 𝑥-, 𝑦- and 𝑦𝑎𝑤-

axis were analyzed, since the geometry is essentially restricted to 3 DOF. 

 
Figure 4: Baseline of the parameter study. (0, 0) corresponds to geometric situation (a), (0, 5) to (b), 

(5, 0) to (c) and, (10, 5) to (d) in Figure 1. The grey area indicates geometrically impossible 

arrangements. The arrangement of maximum absolute change per axis is indicated by a white circle, 

that of the maximum relative change by a white square. For the 𝑥-axis both points coincide. 
 

Figure 5 displays the maximum change in velocity relative to the baseline. The geometric situation for 

each maximum is indicated in Figure 4. If the coupling terms (i.e. off-diagonal elements) of the added 

mass tensor are 0, the velocity along the 𝑥-axis is and stays 0 given the chosen geometric arrangement 

(Fig. 1 and 4). As such, Figure 5 does not show the change relative to the baseline, but relative to the 

pre-collision velocity. 

 
Figure 5: Relative differences between baseline and new theory as a function of the magnitude of the 

off-diagonal terms in the added mass tensor. 
 

The appearing non-zero velocity in 𝑥-direction upon introducing non-zero off-diagonal terms in the 

added mass tensor is a significant difference between the current standard method as described in the 

literature and the collision resolution model presented in this paper. This physical effect of a motion 

solely caused due to hydrodynamic coupling at the time of collision is simply not captured if a diagonal 

added mass tensor is used. 



 
Figure 6: Absolute differences between baseline and new theory as a function of the magnitude of the 

off-diagonal terms in the added mass tensor.  
 

Figures 5 and 6 further illustrates that the difference between using a diagonal or full added mass tensor 

with respect to the resulting velocity changes is quite significant. Considering for example the 10% 

mark of the off-diagonal elements, which are values that certainly can occur in real structures, a 

maximum change for 𝑥 of 0.03 m/s or 3%, for 𝑦 of 0.0004 m/s or 0.1%, and for yaw of 0.007 rad/s 

or 2% of the velocity response upon a collision is observed. 

 

Figure 7 shows the absolute differences for the 10% mark as a function of geometric arrangement as 

an example. The trends visible are representative for any percentage of the off-diagonal values. It 

shows that for the 𝑥-axis the strongest effect off the off-diagonal terms is observed for a head-on 

collision with misalignment in either CG or the contact point resulting in a less strong effect. For the 

𝑦-axis the effect is reversed, and a strong effect occurs if the misalignment between either or both of 

CG and contact point is strong. For the 𝑦𝑎𝑤-axis of the struck object the strongest effect is observed 

for stronger misalignments of CG and contact point as long as both CGs and the contact point are 

colinear. For the striking object either but not both misalignments lead to a strong effect of different 

sign. 

Considering the off-diagonal percentage a strong linear correlation (or anti-correlation) across all 

geometric arrangements is observed for all axes except 𝑦𝑎𝑤 of the striking object (correlation 

coefficients: 𝑥struck = 0.93, 𝑦struck = −0.85, 𝑦𝑎𝑤struck = 0.82, 𝑥striking = −0.93, 𝑦striking = 0.85, 

𝑦𝑎𝑤striking = 0.32). Figure 7 explains the latter by the observed sign change for different geometries. 

 
Fig 7: Difference between baseline and new method for 10% off-diagonal values of the added mass 

tensor as a function of geometric arrangement. 𝑦-axis scaled by 20 for visibility. 

 

Experimental Validation 

 

From the collision experiments, the measured change of velocity in all 6 DOF was determined. 

Moreover, all quantities to predict the velocity change with the theory developed in this paper were 



determined: pre-collision velocity vector, CG of floating dock and PSV, point of contact, contact 

normal, and CoR. The added mass tensors for dock and PSV were determined by computer simulation 

using WAMIT (see appendix A). Given the small values of the off-diagonal terms of the added mass 

tensor for both floating dock and PSV, using our new model only produces slightly different results 

compared to a model using solely the diagonal added mass tensor. As such the focus of the following 

analysis is the ability of our model to predict experimental collision responses correctly. 

 

The data (Fig. 8) was compared to the theory by use of correlation coefficients (in parenthesis), which 

reveal a good agreement between measurement and theory for the following linear modes: 𝑥-axis 

(dock: 0.85, PSV: 0.86), 𝑦-axis (dock: 0.63, PSV: 0.70) and 𝑦𝑎𝑤-axis (dock: 0.61, PSV: 0.15), with 

the 𝑦𝑎𝑤-axis for the PSV being an outlier of that trend. The agreement between measurement and 

theory for the following oscillatory modes (see appendix B) overall is low: 𝑧-axis (dock: −0.05,          

PSV: −0.31), 𝑟𝑜𝑙𝑙-axis (dock: −0.38, PSV: −0.27) and 𝑝𝑖𝑡𝑐ℎ-axis (dock: −0.17, PSV: 0.16). A more 

detailed look reveals that the theory generally underestimates the velocity changes along all axis, 

except for the roll-axis of the PSV. This effect is smaller for the linear modes, where the correct trend 

for the velocity changes was identified and stronger for the oscillatory modes. 

 

The same trends as described before are observed if only a subset of the experiments based on the 

experimental conditions is analyzed. The only notable difference is the subset of lower thrust power 

for the floating dock, for which larger positive correlations are observed for the oscillatory modes as 

well (𝑧: 0.34, 𝑟𝑜𝑙𝑙: 0.21, 𝑝𝑖𝑡𝑐ℎ: 0.37). 

 
Figure 8: Measured and predicted velocity changes for the linear modes at different experimental 

parameters together with the respective regression lines. 

 

DISCUSSION 

 

To the best of our knowledge, this work is the first to present a collision resolution algorithm that takes 

the full added mass tensor into account. This novel theory was obtained by applying a common 

formalism for the equations of motion in the marine domain to a well-established algorithm for 

collision resolution in the field of computational physics. 

The conducted parameter study shows that even at small to moderate values of the off-diagonal 

elements of the added mass tensor, the velocity change upon a collision changes significantly compared 



to solely using the diagonal elements of the tensor. The parameter study further indicates that in certain 

geometric situations motions along an axis can be captured that the currently prevalent theory in the 

literature simply can not capture. Generally, the geometric arrangement has a strong influence on how 

the velocity changes along certain axes. This effect shows a complex interplay with the coupling terms 

between the axes, when they are considered. 

 

Our new theory shows good performance in predicting real collision events between a floating dock 

and the PSV ship model for the linear modes of motion. The predictive performance is severely reduced 

for the oscillatory modes of motion. The latter is attributed to two main effects. Firstly, both floating 

dock and PSV model are rather stable floating objects, making the collision response along the 

oscillatory modes both small and short-lived and thus difficult to both accurately measure and correctly 

predict. Secondly, the model presented in this paper solely deals with the inertial collision response at 

a single point of contact over an infinitesimal time. As such, additional effects like waves, friction, 

prolonged contact and extended contact areas are not captured by the presented theory. That such 

effects are indeed present is further supported by the persistent underestimation of the measured 

collision response by our theory, which indicated the presence of additional effects. Moreover, the 

prediction of the oscillatory modes for the floating dock was better at lower thrust forces of the PSV, 

which points to wave effects causing some of the disagreement between measurement and theory, since 

more energy put into the water by higher thrusts leads to stronger disturbances of the free surface. 

 

CONCLUSIONS 

 

In this work, a new theory and algorithm to resolve collision events between floating objects that uses 

the full added mass tensor was introduced. A parameter study was conducted to investigate the 

difference between the new theory and the currently most used method in the literature. The theory 

was further used to predict velocity changes for experimentally observed collisions and the results 

were compared with the actual measurements. 

 

To predict the velocity change upon a collision, the pre-collision velocity vectors, CoR, geometric 

arrangement (CG, contact point, contact normal), and system inertia tensors of the colliding objects 

must be known. For the parameter study restrictions were made to the geometry, and the system inertia 

tensors was predicted using the WAMIT software (a panel method). A significant difference between 

the reference method and our theory was observed in the parameter study. In future work, the 

restrictions to the geometry of the collisions could be lifted to gather an even more complete picture 

of the interplay between the inputs to the collision resolution algorithm. Moreover, more realistic 

objects could be studied in addition to the cubes augmented with artificial added mass used here. 

 

The comparison between experimental data and theoretical predictions showed good agreement for 

the linear modes of motion and weak agreement for the oscillatory modes. This shows our method is 

generally capable of predicting the velocity changes due to real collision events of floating objects. To 

compensate for the additional effects causing the observed deviations, our method should be 

augmented with the capability to handle frictional effects during the collision as well. Further it should 

be evaluated in a simulation that captures wave effects to see if the prediction in the oscillatory modes 

is significantly improved. 

 

Finally, future work could develop the theory presented here to naturally support a 3 DOF geometry, 

since the full theory currently needs to be used since singular matrices are otherwise encountered 

during inversions. Since the predictive capabilities of the method for real world collisions are 

particularly good for the linear modes of motion, this endeavour seems worthwhile. 
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APPENDIX A 

 

Values of the added mass tensor of the floating dock  

 

𝐌A,dock

=

[
 
 
 
 
 
 

1.81 kg 0 kg 0 kg 0 kg ⋅ m 1.58 kg ⋅ m 0 kg ⋅ m
0 kg 1.81 kg 0 kg −1.58 kg ⋅ m 0 kg ⋅ m 0 kg ⋅ m
0 kg 0 kg 269 kg 0 kg ⋅ m 0 kg ⋅ m 0 kg ⋅ m

0 kg ⋅ m −1.32 kg ⋅ m 0 kg ⋅ m 9.36 kg ⋅ m2 0 kg ⋅ m2 0 kg ⋅ m2

1.25 kg ⋅ m 0 kg ⋅ m 0 kg ⋅ m 0 kg ⋅ m2 9.63 kg ⋅ m2 0 kg ⋅ m2

0 kg ⋅ m 0 kg ⋅ m 0 kg ⋅ m 0 kg ⋅ m2 0 kg ⋅ m2 0.195 kg ⋅ m2]
 
 
 
 
 
 

 
(15) 

 

and the PSV model 

 

𝐌A,PSV

=

[
 
 
 
 
 
 

2.78 kg 0 kg 4.32 kg 0 kg ⋅ m 4.79 kg ⋅ m 0 kg ⋅ m
0 kg 21.0 kg 0 kg −0.54 kg ⋅ m 0 kg ⋅ m 0.51 kg ⋅ m

4.21 kg 0 kg 122 kg 0 kg ⋅ m 8.89 kg ⋅ m 0 kg ⋅ m

0 kg ⋅ m −0.57 kg ⋅ m 0 kg ⋅ m 0.49 kg ⋅ m2 0 kg ⋅ m2 −0.063 kg ⋅ m2

4.99 kg ⋅ m 0 kg ⋅ m 11.3 kg ⋅ m 0 kg ⋅ m2 16.1 kg ⋅ m2 0 kg ⋅ m2

0 kg ⋅ m 0.87 kg ⋅ m 0 kg ⋅ m 0.12 kg ⋅ m2 0 kg ⋅ m2 4.63 kg ⋅ m2 ]
 
 
 
 
 
 

 

 

(16) 

as predicted by WAMIT. 

 

APPENDIX B 

 

Figure 9: Measured and predicted velocity changes for the oscillatory modes at different 

experimental parameters together with the respective regression lines. 


