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ABSTRACT  

Steel Catenary Risers (SCRs) transport hydrocarbons from subsea wells to floating 

production systems in deep-water environments. SCRs are prone to material degradation and 

fatigue damage over time, particularly in the touchdown zone (TDZ), where the riser is 

exposed to cyclic contacts with the seabed under the environmental and operational loads. 

The cyclic riser-seabed interaction results in seabed soil remoulding and a gradual trench 

formation 3 to 5 riser diameters deep within the first few years after SCR installation. It is 

publicly accepted that the trench formation and the non-linear hysteretic riser-seabed 

interaction may have a significant impact on fatigue life in the TDZ. The assessment of the 

trench impact on SCR fatigue requires an accurate understanding of the trench profile. This, 

in turn, needs costly and time-consuming subsea surveys using remote operating vehicles 

(ROVs). Autonomous Underwater Vehicles (AUVs) can be a cost effective alternative if they 

can effectively track the SCR catenary profile during the autonomous navigation. This paper 

explores, in a simulated environment, the utilization of virtual sensors such as an 

echosounder, camera, and sonar to develop an image processing pipeline incorporating 

bilateral denoising, Canny edge detection, Hough transform, and K-means clustering for SCR 

autonomous tracking. Due to the inherent noise causing asymmetric edge detection, the 

algorithms focused on stabilizing and refining the image processing results. A torpedo-shaped 

AUV was chosen for its efficiency in maintaining stability during operations. The simulations 

were performed in the UUV Simulator, and the generated images were analyzed to evaluate 

the computer vision performance. The developed SCR tracking solution by AUV, can be 

used for getting autonomous access to the touchdown zone and scan the seabed trench profile 

that can be implemented into the numerical simulations and contribute to the SCR integrity 

assessment studies by incorporation of vital riser-seabed interaction effects. 

KEYWORDS: Steel Catenary Risers; Autonomous Underwater Vehicles; Computer Vision; 

Sensor-Based Tracking; Fatigue analysis. 
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1. INTRODUCTION  

The global energy supply heavily relies on the transfer of oil and gas from underwater 

sources. Steel Catenary Risers (SCRs) are commonly used in offshore fields to transport 

hydrocarbons from the seabed to the floating platform, where they experience cyclic stress 

from environmental factors like waves, currents, and the movement of the host vessel 

(Janbazi & Shiri, 2023), especially in the touchdown zone (TDZ). The interaction between 

the riser and seabed under cyclic loading leads to remoulding of the seabed soil and the 

gradual development of a trench, typically reaching a depth of 3 to 5 riser diameters within a 

few years after SCR installation. It is widely acknowledged that both trench formation and 

the non-linear, hysteretic nature of riser-seabed interaction can significantly influence fatigue 

life in the Touchdown Zone (TDZ). Accurately assessing the trench’s impact on SCR fatigue 

requires a detailed understanding of its profile, which generally demands expensive and time-

consuming subsea surveys using remotely operated vehicles (ROVs). However, Autonomous 

Underwater Vehicles (AUVs) may offer a more cost-effective solution, provided they can 

reliably follow the SCR’s catenary profile during autonomous navigation. Traditional 

methods, particularly those relying on remotely operated vehicles (ROVs), can be costly, 

time-consuming, and limited in scalability. Nevertheless, robotic technologies, particularly 

autonomous underwater vehicles (AUVs), have revolutionized subsea operations. With sonar, 

optical cameras, and environmental sensors, they can autonomously navigate and inspect 

underground pipelines and cables (Monterroso Muñoz et al., 2023).  

Because of the high dangers associated with exploring the maritime environment, Unmanned 

Underwater Vehicles (UUVs) are a necessary tool for improving operating efficiency and 

safety. Autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) are 

two examples of UUVs that are becoming indispensable in marine technology. While AUVs 

function autonomously and are therefore perfect for sophisticated, independent operations, 

particularly in situations where manned vessels are impractical, ROVs are attached to a 

Surface Control Unit (SCU) and are flexible in carrying out a variety of duties (Zalewski, J. 

et al., 2024). 

Maintaining a precise alignment along the whole length of the pipe while keeping a set 

distance between the robot and the object is necessary for tracking an underwater object, 

especially a pipeline. The robot’s lateral movement must be carefully navigated to keep the 

pipe in the center of the field of view during this operation. Many studies have been carried 

out to address these issues within the last 20 years. Sonar sensors and visual cameras, which 

are essential for tracking in low-visibility situations and provide high-resolution visual 

information, are the subjects of the majority of investigations. To improve the navigation and 

placement of Autonomous Underwater Vehicles (AUVs), additional techniques have been 

developed that make use of depth sensors, Inertial Measurement Units (IMU), and Doppler 

Velocity Logs (DVL). To provide efficient and dependable tracking in challenging 

underwater settings, these sensors cooperate to maintain precise distance and direction 

concerning the pipeline. A vision-based autonomous robotic fish was shown by Hu et al. 

(2009), proving that dynamic target following in submerged situations is feasible. Their 

technique uses a digital camera and a modified continuously adaptive mean shift (Camshift) 

algorithm to maintain a visual lock on a target. It was inspired by the steadiness and mobility 

of the boxfish. The Camshift algorithm operates on a probability distribution image derived 

from the object’s color histogram, utilizing the Cr and Cb components from YCrCb color 

space to enhance robustness in varying lighting conditions while minimizing computational 

resources. As the target moves in the image plane or changes distance from the camera, the 



search window adapts accordingly, enabling the robotic fish to actively adjust its position and 

maintain consistent tracking. Further contributions to the field include the work of Jacobi and 

Karimanzira (2014), who developed a multi-sensor fusion approach for underwater pipeline 

tracking using AUVs. Their method combined data from cameras, multibeam echo sounders 

(MBES), sub-bottom profilers, and magnetic sensors to create probability maps for pipeline 

detection, improving the accuracy and efficiency of inspections. Fatan, M. et al. (2016) 

presented an image processing technique for underwater cable detection utilizing edge 

classification. Their method combines Multilayer Perceptron neural networks and Support 

Vector Machines with texture analysis to enhance the precision of Automated Underwater 

Vehicle (AUV) tracking systems. This approach refines edge detection and employs 

morphological operations and the Hough transform to accurately identify underwater cables. 

Chen, Chuang, and Wang (2015) developed a specialized algorithm to improve the detection 

of yellow guide ropes in turbid underwater environments, crucial for guiding ROVs during 

breakwater inspections. Their approach incorporates a three-stage process involving target 

enhancement, edge detection, and line detection, utilizing the YCbCr color space, Otsu’s 

method for adaptive thresholding, and the probabilistic Hough transform. 

Lu, Y., & Song, D. (2015) used a vision-based technique to provide real-time target 

identification and location in aquatic environments. The artificial landmarks are made with 

color patches placed in a certain way. The technique differs between two detection modes: 

strong detection uses the topological links between colors to pinpoint the landmark center 

precisely, whereas weak detection recognizes individual colors. To accomplish effective real-

time two-dimensional target tracking, Yu, J. et al. (2020) progressed the development of a 

camera-stabilizing system for robotic fish by utilizing a deep reinforcement learning (DRL) 

technique. This system incorporates a small camera for capturing underwater images, 

utilizing the Kernelized Correlation Filter (KCF) algorithm, known for its high performance 

and low computational cost, to visually track the target. Akram and Casavola (2021) 

presented a visual control scheme for AUVs to track underwater pipelines via camera-based 

image processing. Their method converts camera images into HSV format for segmentation, 

efficiently detecting pipelines through image resizing and HSV thresholding within ROS and 

OpenCV environments. This approach, validated through simulations, significantly enhances 

the robustness and accuracy of underwater pipeline tracking. Da Silva et al. (2022) explore 

the combination of cutting-edge image processing and machine learning techniques to 

enhance the autonomous navigation of Unmanned Aerial Systems (UAS) in onshore unburied 

pipeline inspections. They implemented a Convolutional Neural Network (CNN), specifically 

the You Only Look Once (YOLO) architecture, to effectively detect pipelines. This system 

combines YOLO’s real-time object detection with traditional image processing methods like 

Canny edge detection and Hough Transform to refine the tracking of pipeline routes. Yang et 

al. (2021) introduce an enhanced algorithm for detecting curved line shapes, crucial for 

aiding Autonomous Underwater Vehicles (AUVs) in underwater cable inspection tasks. Their 

approach, the Crossline Correction Non-linear RANSAC (CCNL-RANSAC), innovates by 

incorporating adaptive Canny edge detection and an improved RANSAC method tailored for 

nonlinear environments. The integration of advanced visual processing methods in 

underwater inspections has evolved with the introduction of structured light vision (SLV) and 

stereo-image processing techniques. A dual-line laser SLV system was created by Fan, J. et 

al. (2023) for underwater pipeline tracking and three-dimensional reconstruction. Using 

adaptive threshold segmentation and a second-order difference operator, the method locates 

laser stripe regions on the pipeline. In parallel, Bobkov et al. (2023) enhanced the accuracy of 

AUV inspections using stereo images by developing algorithms that combine 2D and 3D 

video data processing. Their approach focused on identifying underwater pipeline (UP) 



boundaries against the seabed background through vectorized images, allowing for both 

tracking and initial recognition of the pipeline. While the recognition mode depends on 

matching contours in stereo-pair images, the tracking mode uses a continuity-based algorithm 

to estimate the position of the current segment based on historical data. Feng et al. (2023), 

which proposed an automatic cable-tracking method (ACTM) based on side-scan sonar 

(SSS). The method developed by Feng et al. enables rapid localization and stable tracking of 

submarine cables despite environmental uncertainties due to autonomous decision-making 

and dynamic replanning.  

For any autonomous SCR monitoring system, a critical prerequisite is the ability to accurately 

capture the real 3D profile of the riser. This is essential for fatigue analysis, which depends 

on the actual riser shape under dynamic environmental conditions. However, a clear gap 

exists in the current literature regarding autonomous tracking of SCR profiles in such subsea 

environments. This study directly addresses that gap by focusing on reliable, real-time 

tracking as a foundational step for generating updated riser profiles required for fatigue 

assessment. 

We propose a multi-sensor fusion approach, where an AUV equipped with a stereo camera 

and a multibeam echosounder autonomously tracks the SCR in real time. The system is 

validated through dynamic simulations that include environmental disturbances, sensor noise, 

and riser motion, demonstrating its effectiveness in maintaining a stable trajectory and 

capturing the riser’s time-varying shape with high fidelity. 

In this study, we prioritize efficiency in terms of computing load and cost and concentrate on 

real-time detection and tracking of a steel catenary riser inside a 3D space. An AUV equipped 

with a stereo camera for lateral movement tracking and a multibeam echosounder to 

determine the distance from the riser processes sensor data to adjust its position and maintain 

continuous tracking with the approach presented in Figure 1. 

 

 

Figure 1.  Autonomous Riser Tracking Loop – The AUV collects sensor data, detects the 

riser centerline and distance, calculates deviation, adjusts fin forces, updates position, and 

repeats the process for continuous tracking. 

 

The developed SCR tracking solution by AUV, can be used for getting autonomous access to 

the touchdown zone and scan the seabed trench profile that can be implemented into the 

numerical simulations and contribute to the SCR integrity assessment studies by 

incorporation of vital riser-seabed interaction effects. 

2. SIMULATION AND ENVIRONMENT SETUP 

An effective underwater simulation platform in the marine environment must accommodate 

diverse vehicles, manipulators, and sensors while accurately simulating complex 

environments, including hydrodynamic and hydrostatic forces. Among the most popular 

simulators in this domain are UWSim (M. Prats et al., 2012) and UUV Simulator (M. M. M. 



Manhaes. et al., 2016), both widely recognized for their capabilities in handling such 

requirements (Collins et al., 2021). We used the UUV Simulator, a powerful underwater 

simulation tool based on Gazebo and ROS, which provides a range of sensors like sonar, 

cameras, DVL, and IMU, along with hydrodynamic models and actuators such as fins and 

propellers. In this work, we focused on simulating three key aspects: the sea environment, the 

AUV model, and its motion control, to effectively evaluate the riser tracking scenario. 

 

1.1. Environment 

To establish the foundation for our work, we modified the UUV simulator’s world files, 

described in the SDF (Simulation Description Format), an XML-based format used to define 

objects, environments, and interactions for robot simulation, visualization, and control. We 

incorporated a steel catenary riser (SCR) model as shown in Figure 2 designed in 

SolidWorks, the global geometry based on its real-world placement in the Gulf of Mexico, 

with a total curve length of 2,333 m from the hang-off point to the anchor point and a depth 

of 1,600 m and the angle from the hang-off point 78 degrees (Janbazi, H., Shiri, H., 2023). 

The SCR model was exported in STL format and then converted into SDF format for 

integration into the simulation environment. 

The motion of the riser was simulated based on a time frame of 20 seconds, accounting for 

vertical and lateral movements of the spar floating facility. The SCR was set to sinusoidal 

oscillate with a range of ±0.5 m due to these forces, effectively simulating the motion of the 

riser in an underwater environment. 

The hydrodynamics of the sea were simulated using the default underwater world settings of 

the UUV simulator. These enhancements ensured the environment accurately represented the 

operational conditions of SCRs in offshore locations, enabling precise testing and evaluation. 

Additionally, we introduced environmental noise and adjusted the sea color to create a more 

realistic setting, as our research is vision-based. The seabed, a critical element in the context 

of steel catenary risers, was also included to enhance the overall accuracy of the simulation. 

 

Figure 2 Simulated environment in SDF format, depicting the Steel Catenary Riser (SCR) 

with its key regions: the catenary region from the sea surface to the Touch Down Point (TDP), 

the buried zone, and the surface zone where the riser lies on the seabed. 

As shown in Figure 2, the steel catenary riser consists of distinct regions from the sea surface 

to the touchdown point, known as the catenary region, where the riser follows a suspended 



curve due to its weight and hydrodynamic forces. Beyond the touchdown point, the riser 

transitions into the buried region, where it descends into the seabed before eventually resting 

and laying along the seabed surface. 

 

1.2. AUV Model 

We used the ECA A9 fin-based AUV in this scenario because it is effective and fits our goals 

nicely. Furthermore, the UUV simulator already contains URDF (Unified Robot Description 

Format) files. As shown in Figure 3, we adjusted the positions and angles of the sensors, such 

as the camera and echosounder, to 45 degrees to ensure effective detection of the riser at all 

stages, including both the horizontal and vertical sections of the catenary. Furthermore, the 

camera resolution and field of view, along with the echosounder settings, were optimized to 

balance accuracy and processing efficiency. The camera’s horizontal field of view (HFOV) 

was set to 0.45 radians, with a resolution of 400x300. For the echosounder, the field of view 

was configured to 0.523 radians with 60 samples, and a Gaussian noise of 0.1 was added to 

both sensors. 

 

Figure 3 AUV equipped with sensors collecting real-time data to detect and estimate 

deviation from the steel catenary riser for precise tracking and navigation. 

3. SENSOR FUSION AND DATA INTERPRETATION 

The core of the work involves a continuous loop of receiving sensor data and processing it to 

determine the AUV’s position relative to the riser in 3D space. The camera data is converted 

from ROS format to OpenCV using the cv_bridge library. The communication occurs via a 

rospy subscriber, where the Image module from the sensor_msgs library is used for receiving 

camera sensor data. For echosounder data, the Range module from the same library is 

utilized. Both the camera and echosounder data are handled in a Python 2.7 ROS node. 

1.3. Vision-Based Processing 

To ensure accurate detection of the steel catenary riser (SCR), multiple image processing 

techniques were applied, as shown in Figure 4 including bilateral filtering, Canny edge 

detection, Hough Transform, and K-means clustering. These steps refined the visual data, 

reducing noise, enhancing pipeline edge visibility, and finding the center of the riser. 



 

Figure 4 Image processing pipeline for riser detection: (a) Input image, (b) Denoising using 

bilateral filtering, (c) Edge detection with Canny, (d) Line detection in different colors using 

Hough transform, and (e) Identified clusters center which is located at the center of riser. 

Bilateral filtering was used as a preprocessing step to smooth the image while preserving 

critical edges. The intensity distribution before filtering showed high fluctuations, with abrupt 

changes between neighboring pixels, leading to false edge detections. After applying a 

bilateral filter with parameters d = 15, σ color = 75, and σ space = 75, the intensity variations 

were significantly reduced while retaining key structural details. This resulted in a smoother 

image where the edges remained sharp, as illustrated in Figure 5. 

 

Figure 5 Comparison of input and denoised images: The left side shows the noisy input 

image, while the right side presents the result after bilateral filtering, where noise is removed 

while preserving edges. 

Following noise reduction, Canny edge detection was applied to extract pipeline edges. The 

algorithm was set with low and high thresholds of 50 and 200, ensuring that strong edges 

were detected while suppressing weak ones. This step produced a clear segmentation of 

pipeline boundaries, reducing false positives from background textures. The resulting 

emphasizes the riser contours edges shown in Figure 6. 



 

Figure 6 Denoised image (left) and Canny edge detection output (right), highlighting riser 

edges extracted from the background. 

The left side of Figure 6 presents the input image, displaying the original scene before edge 

extraction. On the right, the extracted edges using the Canny algorithm are highlighted in 

white, effectively distinguishing the riser contours from the seabed. All pixels classified as 

edges are shown in white, ensuring a clear contrast against the background for accurate 

boundary detection. 

To further refine edge detection, the Hough Transform was used to identify structured line 

segments corresponding to the riser. Since parameter selection significantly affects 

performance, multiple configurations were tested. Threshold values (50, 100), minimum line 

lengths (20, 30, 50), and maximum gaps (5, 10, 20) were evaluated to optimize line detection. 

Table 1 presents the performance results for different settings, using the F1 Score as the 

primary metric. The best configuration was Threshold = 100, Min Length = 20, and Max Gap 

= 20, which maximized Precision and Recall while reducing false detections. The final 

detected edges using this optimized configuration are shown in Figure 7. As shown in the 

figure, the Hough Transform successfully detected edges from the Canny output, with 

identified line candidates displayed in different colors. 

Table 1 Hough Transform Parameter Tuning and Performance Metrics – Comparison of 

threshold, max gap, and min line length settings with corresponding precision, recall, and F1 

score. 

Threshold Min Length Max Gap Precision Recall F1 Score 

50 20 5 1.00 0.70 0.83 

50 20 10 1.00 0.82 0.90 

50 20 20 1.00 0.97 0.98 

50 30 5 1.00 0.70 0.83 

50 30 10 1.00 0.82 0.90 

50 30 20 1.00 0.97 0.98 

50 50 5 1.00 0.70 0.83 

50 50 10 1.00 0.82 0.90 

50 50 20 1.00 0.97 0.98 

100 20 5 1.00 0.34 0.51 

100 20 10 0.99 0.69 0.81 



100 20 20 0.99 0.99 0.99 

100 30 5 1.00 0.30 0.46 

100 30 10 0.99 0.69 0.81 

100 30 20 0.99 0.99 0.99 

100 50 5 1.00 0.47 0.64 

100 50 10 0.99 0.69 0.81 

100 50 20 0.99 0.99 0.99 

 

 

Figure 7 Probabilistic Hough Line Transform applied to extract riser edges, with detected line 

segments shown in different colors. Some edges are discontinuous, highlighting the potential 

for detecting additional edges on each side of the riser. 

Finally, K-means clustering was applied to separate pipeline edges from background artifacts. 

With K = 2, the largest clusters were assumed to represent the pipeline edges, allowing a 

centerline estimation for tracking. This approach reduced variations caused by outlier pixels, 

leading to a more stable detection of the riser’s centerline to adjust the position of AUV based 

on that. 

 

1.4. Echo-Sounder Data Interpretation 

The echosounder provides distance measurements between the AUV and the riser. A field of 

view (FOV) of 0.52 radians ensures optimal signal reception in subsea conditions where 

electromagnetic signals fail. The shortest range detected in the sonar beams determines the 

riser’s depth and proximity, allowing dynamic AUV positioning adjustments. 

1.5. Motion Control 

The East-North-Up (ENU) coordinate system is employed in this simulation and is 

commonly used for underwater navigation and mapping. ENU system defines the x-axis as 

pointing east, the y-axis as pointing north, and the z-axis as pointing upward. Figure 8 

illustrates how this system ensures that all positional and motion data is aligned with 

geographic directions, simplifying the interpretation of the AUV’s movements and 

interactions with its environment. 

In the highly nonlinear environment caused by the motion of the riser and the significant 

coupling effects of hydrodynamic forces, developing a robust mathematical model to 



continuously and effectively control the AUV’s position is crucial for this research. Fossen’s 

equations, as shown in equation (1) (Fossen, T. I., 2011), of motion, the default 

hydrodynamic model in the simulation package, are employed to compute the necessary 

forces. 

0( ) ( ) ( )r r r r r wind waveM C D g g              
 

(1) 

Where M is the system inertia matrix (MRB + MA), C ( r ) is Coriolis matrix (CRB ( r ) + 

CA ( r )), D ( r ) is the damping matrix, g (η) vector of gravitational/buoyancy forces and 

moments, go is the vector used for pre-trimming, τ is a vector of control inputs, τ wind is a 

vector of wind forces, and τ wave is the vector of wave forces.  

Once the desired motion (left, right, up, or down) is determined for tracking the riser, the PID 

controller calculates the required pitch, yaw angles, and thrust force to achieve the desired 

position. These control inputs are used to adjust the fin angles of the AUV’s four fins and the 

angular velocity of the propeller. Appropriate forces, as defined by equations (2) and (3), are 

generated to control the AUV’s movement in 3D space. 

FD = 0.5  ν2CD A                                                                                             (2) 

 

FL = 0.5  ν2CL A                                                                                              (3) 

 

Where ρ is the fluid density, ν is the velocity, CL/CD is the lift and drag coefficient which 

depends on the shape and the flow regime, and A is the reference area. 

 

Figure 8 AUV’s six degrees of freedom (roll, pitch, yaw, surge, sway, heave) compared to the 

Earth-fixed coordinates (X, Y, Z). 



In order to determine nonlinear control inputs based on the riser’s vertical and horizontal 

deviations, sensor data is evaluated at each instant. The thrust force and computed pitch and 

yaw angles are subsequently transmitted to the AUV’s actuators. Therefore, the AUV 

provides the required lift, drag, and thrust forces to achieve the desired motion by adjusting 

its fins and propeller. 

4. PERFORMANCE EVALUATION 

1.6. Success Rate 

In this study, 20 images were selected along the entire length of the steel catenary riser (SCR) 

to evaluate the performance of the detection method under varying environmental conditions, 

as shown in Figure 9. These images capture different background transitions, ranging from a 

uniform blue water column to complex seabed structures that introduce additional noise and 

variations in illumination. The selection process ensures that the dataset includes a diverse 

range of scenarios, allowing a comprehensive assessment of the method’s robustness. 

To quantitatively measure detection accuracy, F1 scores were computed for each selected 

image by comparing Hough-detected edges with ground truth edge pixels, as reported in 

Figure 10. These scores provide insight into the method’s reliability across different sections 

of the SCR, highlighting performance variations due to changes in background complexity, 

visibility, and riser curvature. The results demonstrate how well the proposed approach 

maintains consistent detection performance along the riser, despite environmental challenges. 

As shown in Figure 10, the F1 scores range from 0.75 to 1.0, reflecting varying detection 

accuracy across different images (a–t). Higher scores indicate precise edge detection, while 

lower scores suggest cases where background noise or complex seabed features impacted 

performance. 

 

Figure 9 Set of 20 selected images (labeled a-t) for performance evaluation along the length 

of the Steel Catenary Riser, transitioning from a blue background (representing seawater) to 

seabed. The gray regions depict the riser, while the brown areas indicate the seabed 



 

 

Figure 10 F1 Score Comparison Between Hough-Detected Edges and Ground Truth – The F1 

scores, ranging from 0.75 to 1.0, represent the accuracy of Hough-detected edges compared 

to ground truth edge pixels across 20 selected images (a–s), showing variations in detection 

performance across different sections of the SCR. 

1.7. Simulation Result 

The results of the simulated experiment are presented in Figure 11 and Figure 12. Figure 11 

illustrates the top view (X, Y plane) of the steel catenary riser, showing its oscillations and 

how the AUV tracked these oscillations. For better clarity, this view is divided into nine 

segments, covering the riser from its starting point to its endpoint. Figure 12 presents the side 

view (X, Z plane), showing how the AUV accurately followed the true curve of the riser. As 

shown, the AUV successfully tracked the riser’s path, accurately following its curve in both 

the side view (X, Z plane) and the top view (X, Y plane). 

The AUV maintained its position directly above the steel catenary riser while adjusting its 

lateral motion and consistently keeping a stable distance from the riser. This was observed 

across all sections, including the catenary, buried, and surface zones. The AUV managed to 

stay above the riser by processing data from the camera sensor and adjusting its position 

based on hydrodynamic forces and water currents. The motion adjustments were non-linear 

and designed to respond proportionally to the variation between the AUV and the center of 

the riser, ensuring precise and stable tracking throughout the experiment. 



 

Figure 11 AUV’s Path and SCR Oscillation in the (X, Y) Plane – The AUV’s actual path (red) 

compared to the SCR position (blue) across divided length segments for clearer analysis. All 

dimensions are in meters. 

 

Figure 12 AUV Path and SCR Profile in the (X, Z) Plane – The AUV’s actual path (red) 

compared to the SCR’s real curve (blue) in the side view. All dimensions are in meters. 

5. CONCLUSION 

This research has demonstrated the feasibility of using a torpedo-shaped Autonomous 

Underwater Vehicle (AUV) equipped with multi-sensor fusion techniques to autonomously 

track Steel Catenary Risers (SCRs) in a 3D underwater environment. The proposed system 

integrates a stereo camera for lateral tracking and a multibeam echosounder for depth 

estimation, enabling the AUV to dynamically adjust its position in response to real-time 



environmental variations. By leveraging image processing techniques such as bilateral 

filtering, Canny edge detection, Hough Transform, and K-means clustering, the system 

effectively enhances riser feature extraction while mitigating the impact of underwater noise 

and visibility limitations. 

The UUV Sim simulation results validate the accuracy and robustness of this tracking 

approach. The optimized Hough Transform parameters significantly improved edge detection 

precision, achieving F1 scores between 0.75 and 1.0 across different riser sections. The 

AUV’s motion control strategy, based on Fossen’s equations of motion, enabled stable 3D 

path-following along the SCR, with real-time pitch, yaw, and thrust adjustments. 

Comparative analysis between Hough-detected edges and ground truth data confirms the 

system’s reliability in detecting riser structures despite varying seabed textures and 

background complexity. 

This research addresses a critical gap in subsea infrastructure tracking, as no prior studies 

have demonstrated fully autonomous tracking of Steel Catenary Risers (SCRs) in 3D space. 

Accurate and reliable tracking is a key prerequisite for any autonomous subsea monitoring 

system. By addressing this foundational challenge, the proposed approach enables real-time 

riser following through multi-sensor fusion, combining stereo vision and echosounder data. 

The developed SCR tracking solution allows an AUV to autonomously navigate along the 

riser down to the touchdown zone, capturing the detailed geometry of the seabed trench and 

riser profile. This spatial data can be fed into numerical simulations to improve fatigue and 

integrity assessments by incorporating the dynamic effects of riser–seabed interaction. The 

proposed method offers a non-invasive, cost-effective, and scalable solution, laying the 

groundwork for future extensions such as anomaly detection or structural health monitoring. 
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