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ABSTRACT 

The safe navigation and structural resilience of ice-capable vessels in polar regions depend 
critically on accurate estimation of local ice loads acting on the hull. Traditional approaches 
rely on strain gauge measurements and inverse finite element method (FEM) modeling to 
reconstruct the external ice loads based on internal structural responses. While effective 
under controlled conditions, these methods are inherently time-intensive, highly dependent on 
prior modeling, and fundamentally unsuited for real-time applications where immediate 
decision-making is essential. Recent advancements in machine learning offer a promising 
alternative through data-driven surrogate models capable of learning the complex nonlinear 
relationships between measured strain signals and corresponding ice loads. Additionally, 
high-resolution video recordings—commonly available onboard icebreakers—offer rich 
contextual information about the ice–structure interaction environment, including contact 
geometry, ice floe morphology, and fracturing dynamics. However, such visual data has 
rarely been incorporated into load estimation frameworks, leaving untapped potential for 
enhanced performance and situational awareness. This paper explores the feasibility of 
integrating strain gauge time-series data and synchronized visual inputs through a multimodal 
deep learning framework to achieve real-time local ice load estimation. We review recent 
developments in AI-based inverse load modeling using radial basis function neural networks 
and support vector machines, and we extend this paradigm by introducing multimodal 
architectures such as CNN–LSTM hybrids and Transformer-based fusion networks. These 
architectures are designed to capture both temporal strain dynamics and spatial visual patterns, 
facilitating a holistic understanding of structural responses to dynamic ice events. We discuss 
key challenges including data synchronization, representation learning across heterogeneous 
modalities, and the scarcity of labeled real-world datasets. We also propose a practical 
pipeline for onboard deployment, leveraging pre-trained AI models to infer ice loads directly 
from operational data streams. The proposed framework has the potential to fundamentally 
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change how ice loads are assessed in real-time, offering a lightweight, simulation-free, and 
scalable solution for next-generation structural health monitoring systems in ice-covered 
waters.  
 

KEY WORDS : Ice load estimation; Multimodal deep learning; CNN–LSTM architecture; 
Real-time prediction;  

 

1. Introduction 

1.1 Background and Motivation 

Polar-class vessels routinely operate in some of the harshest environments on Earth, 
encountering complex and often unpredictable interactions with drifting sea ice and icebergs. 
These interactions subject the vessel hull to localized impact loads that vary significantly in 
magnitude, direction, and duration. The ability to accurately estimate these loads in real-time 
is critical for structural health monitoring, onboard safety systems, adaptive route planning, 
and design validation of ice-class hulls. Traditionally, local ice loads have been estimated 
using arrays of strain gauges installed along the inner structure of the hull. These sensors 
capture internal deformation patterns that are then used, in conjunction with finite element 
method (FEM) models, to infer the external loads applied by ice impacts. This approach, 
while grounded in physical modeling and widely accepted, presents several limitations: it is 
computationally demanding, sensitive to modeling assumptions, and poorly suited to real-
time applications due to its reliance on batch post-processing. Moreover, in complex ice 
conditions where multiple ice impacts may occur simultaneously or in rapid succession at 
different locations, distinguishing between individual load events becomes exceedingly 
difficult based solely on strain data. Synchronized video footage of the ice–hull interface, 
often collected onboard for documentation or research, can provide complementary 
contextual information such as impact location, floe geometry, and fracture propagation—all 
of which influence the nature of the load. Yet, this rich visual information remains largely 
unutilized in automated load estimation frameworks. 

 
1.2 Research Gap and Opportunity 
Recent studies have demonstrated that machine learning techniques—particularly support 
vector regression and radial basis function (RBF) networks—can successfully model the 
nonlinear relationships between strain measurements and ice loads without relying on FEM-
based inverse solutions. These surrogate models can generalize well to unseen conditions, 
reduce dependency on simulation, and support near-instantaneous inference. However, these 
models typically rely on strain data alone and therefore lack external perception of the ice 
environment, which may contain critical cues for interpreting load scenarios. The fusion of 
strain signals with synchronized video data represents a compelling avenue for extending the 
capabilities of existing AI-based frameworks. Multimodal learning—where different data 
modalities are processed jointly—has shown significant success in fields such as human 
activity recognition, autonomous driving, and structural monitoring. In these domains, 
combining sensor data with visual inputs has led to improved performance, robustness to 
noise, and greater generalizability across environmental conditions. This study investigates 



the feasibility and potential benefits of a multimodal deep learning framework for real-time 
local ice load estimation, integrating strain gauge time-series data with synchronized onboard 
video imagery. We propose neural network architectures that combine temporal encoders for 
strain data (e.g., LSTM layers) with visual feature extractors (e.g., CNNs or Vision 
Transformers), and we examine various strategies for feature-level and attention-based fusion. 
Key contributions of this paper include: 
 A comprehensive review of recent data-driven ice load estimation models and their 

limitations; 
 A conceptual design for a multimodal AI system that merges strain and visual data 

streams; 
 Recommendations for dataset construction, including temporal alignment of sensor 

and video data; 
 A deployment-oriented discussion on inference latency, computational efficiency, 

and onboard integration. 
By bridging structural response data with environmental perception, our approach aims to 
transform traditional load estimation into an AI-powered, context-aware process that operates 
in real time—without the need for FEM simulation or manual interpretation. Such a system 
would not only enhance operational safety but also lay the groundwork for intelligent digital 
twins of ice-going vessels capable of learning from their environment and adapting to 
evolving ice conditions. 

 

2. Related Work 

Traditional methods for estimating local ice loads rely on physical modeling techniques, 
primarily finite element method (FEM)–based inverse analysis. These methods use strain 
gauge data collected from ship structures to compute applied ice loads through influence 
coefficients derived from structural models. While accurate under controlled conditions, 
FEM-based approaches are limited in real-time applications due to their computational 
demands and sensitivity to structural modeling assumptions. To address these limitations, 
recent studies have explored machine learning approaches for load estimation, where 
surrogate models are trained on strain–load mappings generated from simulation or 
experimental data. For instance, Kong et al. (2021) applied least squares support vector 
machines (LS-SVM) to identify ice loads from full-scale strain measurements aboard the 
research icebreaker Xue Long. Their results showed that LS-SVM models could effectively 
generalize across load conditions without requiring FEM models during inference. Similarly, 
Wang et al. (2023) developed a radial basis function (RBF) neural network to estimate far-
field ice loads from localized strain readings. Their model was trained on a combination of 
FEM simulation and scaled laboratory test data, and it demonstrated strong predictive 
accuracy even under noisy conditions and sensor misalignment scenarios. Despite these 
advances, most existing AI-based models rely solely on strain data, neglecting external 
contextual cues that could improve estimation accuracy. In contrast, multimodal learning—
which integrates heterogeneous inputs such as sensor data and video imagery—has been 
shown to improve performance in related domains. In structural health monitoring, Zhou et al. 
(2023) combined displacement data from vision systems with accelerometer readings to 
estimate dynamic loading on aircraft wings, achieving greater robustness and interpretability. 



Beyond structural engineering, multimodal deep learning has been successfully applied in 
autonomous navigation, human activity recognition, and scene understanding. The 
TransFuser framework (Prakash et al., 2021), for example, utilizes a transformer-based 
architecture to fuse camera and LiDAR inputs, significantly improving trajectory prediction 
and collision avoidance in autonomous vehicles. These works collectively demonstrate the 
potential of combining visual and sensor modalities to enhance learning, reduce uncertainty, 
and improve generalization. However, no existing study has comprehensively applied such 
multimodal AI frameworks to real-time ice load estimation in polar marine environments—
representing a novel opportunity addressed in this research. for further analysis and labeling. 
 

3.Methodology 

This section details the architecture and pipeline for real-time ice load estimation using 
synchronized strain gauge and video data. The overall workflow comprises three stages: data 
acquisition and preprocessing, multimodal deep learning model training, and deployment-
ready inference. 
 

3.1 Data Acquisition and Preprocessing 

Table 1. Key Parameters of Multimodal Dataset Preprocessing 

 
To ensure accuracy in the methodology, this section reflects the actual data characteristics 
obtained from the ASC file and the synchronized MP4 video file, both collected during 
controlled ice impact scenarios. The ASC dataset includes 50 Hz time-series strain gauge 
signals and associated metadata. The MP4 video footage corresponds to the same time 
interval and was captured from a hull-mounted camera. Raw hull-mounted video was 
recorded at 4 K resolution, which is sufficiently detailed to extract geometric cues such as 
apparent ice thickness and floe boundaries. During preprocessing, each frame is down-
sampled to 32 × 32 pixels only for neural-network input so as to reduce memory footprint 
and training time. High-resolution imagery is retained in a parallel database and used offline 
to derive auxiliary labels—e.g., categorical thickness class—that augment the training set. 
Although thickness cannot be measured directly at 32 × 32, coarse-scale cues (contact area, 
fracture onset, overall brightness change) remain discernible and, when fused with strain 
history, provide enough context for accurate load estimation. The effect of alternative input 
resolutions (e.g., 64 × 64) is evaluated in the supplementary material. 

Modality Operation Parameter / Method Output Format 

Strain (ASC) 

Sampling 50 Hz Time-series matrix 

Windowing 1.0 sec (50 steps) 5 × 50 array 

Normalization Z-score Scaled time-series 

Video (MP4) 
Frame Extraction 10 fps (aligned) 10 × 32×32×3 frames 

Resizing / 
Preprocessing 

Resize to 32×32, RGB, 
[0,1] Preprocessed frame stack 

Sync Alignment Timestamp-based 
matching Synchronized sample pair 



(1) Sensor Data (ACS Files) 
The ASC files include 50 Hz sampled time-series data, including strain measurements from 
multiple, vessel heading, and speed. Each record contains high-resolution mechanical 
response data needed for capturing localized transient loads. 

 Sampling Rate Alignment: The strain data is collected at 50 Hz, while video frames 
are synchronized accordingly using timestamp alignment. This high sampling rate 
ensures the capture of rapid ice–structure interactions. 

 Data Selection: Relevant columns such as Time (s), Speed (knots), Heading (deg), 
and Strain channels are extracted. 

 Reshaping: Sliding time windows of 1.0 second (50 time steps) are constructed, 
producing input tensors of size 5×50 (features × time). 

 Normalization: Each strain channel is normalized using z-score scaling over the 
entire recording window. 

 Data Selection: Key channels are selected, such as Time, Speed_knots, Heading_deg, 
and multiple strain signals. 

 Reshaping: A sliding time window of 30 steps is used to structure the data into a 
5×30 array (features × time steps). 

 Normalization: Each feature is scaled using z-score normalization to stabilize 
training across sequences. 

(2) Visual Data (MP4 Files) 
The MP4 recordings offer environmental context by capturing real-time interactions between 
ice floes and the ship's hull. 

  Frame Extraction: Frames are extracted at synchronized timestamps matching the 
ACS time window. 

  Preprocessing: Each frame is resized to 32×32 or higher, converted to RGB, and 
scaled to [0,1]. Multiple frames are grouped to represent a time slice. 

  Feature Preparation: Each frame passes through CNN layers to extract spatial 
features. These are averaged or passed through temporal attention to produce a 
compact video embedding. 

(3) Synchronization Mechanism 
Sensor and video data are aligned based on shared timestamps. For each strain sample (30 
time steps), a corresponding set of video frames is selected to ensure temporal consistency. 



 

Figure 1. Overall preprocessing and data fusion pipeline for synchronized strain gauge and 
video input. 

 

3.2 Fusion and Output Regression 

 

Table 2. Network Components by Modality Branch 

 
The two flattened embeddings are concatenated and passed through a fusion layer: 
 Fusion Layer: Dense(64 units, ReLU) 
 Regression Output: Single scalar prediction representing the estimated local ice load 

 

3.3 Multimodal Network Design 

Branch Layer Type Details 

Strain Branch 

Input 5 × 50 Sequence Input Layer 

LSTM 64 hidden units 

Fully Connected Output: 64-dimension vector 

Video Branch 

Input 10 × 32×32×3 Frame Sequence 

Conv+BN+ReLU+Pool × n CNN Feature Extraction 

Temporal Pooling / Avg Frame aggregation 

Fully Connected Output: 64-dimension vector 

Fusion Concatenation Merge 64 + 64 vectors 

Output Dense + RegressionLayer Final scalar output (ice load) 



The model is composed of two parallel input branches—one for strain gauge time-series, the 
other for image sequence inputs. 
(1) Strain Branch 
 Input: 5×50 time-series matrix. 
 Layers: SequenceInput → LSTM (64 units) → Dense Layer (64 units) → Flatten. 
 Purpose: Learns temporal dependencies in strain data that correlate with underlying 

load patterns. 
(2) Video Branch 
 Input: Stack of image frames (10 × 32×32×3). 
 Layers: Conv → BatchNorm → ReLU → Pool (repeated) → Temporal Pooling → 

Dense → Flatten. 
 Purpose: Extracts high-level semantic representations of the surrounding ice 

condition and contact geometry. 
 

3.4 MATLAB-Based Deployment Pipeline 
To support deployment, the entire workflow has been modularized within MATLAB: 
 Data Preprocessing Script: Parses case-specific folders with ACS + MP4 files. 
 Model Training Script: Constructs and trains the dual-branch deep learning model. 
 ONNX Export & GUI Integration: The trained model is exported and linked to a 

MATLAB GUI built with App Designer, allowing real-time inference for field 
operations. 

This design ensures practical usability while maintaining model interpretability, modularity, 
and future scalability for real-world deployments.  
 

4. Experimental Setup 
To evaluate the proposed multimodal deep learning framework, we designed an experimental 
setup based on actual ASC strain gauge data and synchronized onboard video. The following 
subsections describe the dataset composition, model training configuration, evaluation 
metrics, and baseline comparisons. 

4.1 Dataset Construction 

 
Figure 2. 2024 Araon Arctic Voyage 



 
Figure 3. Time-Series of Measured Local Ice Loads (Port & Starboard) 

The dataset used in this study was constructed from full-scale field measurement data 
acquired during the 2024 Arctic Voyage of the IBRV Araon. Strain data were collected using 
a total of 42 strain gauges, with 21 sensors installed on the port (left) side and 21 on the 
starboard (right) side of the ship's hull. During the 2024 Arctic voyage of IBRV Araon, 
measurements were collected in medium-to-heavy pack-ice (ice‐concentration 7∕10 ~ 9∕10). 
Ice thickness along the track varied from 0.7 m to 2.4 m, and floe sizes ranged from small 
broken fragments to consolidated sheets exceeding 20 m in diameter. Local ice loads inferred 
from FEM/ICM post-processing cover a broad envelope from 0.2 MN to 6 MN, reflecting 
both light brushing events and severe ramming impacts. These values serve as ground-truth 
labels for the learning task and as a basis for evaluating prediction significance. 

Table 3. Data Structure Used for Each Input Modality 

 
The dataset was segmented using a sliding window approach with 50% overlap. It was then 
split into training (70%), validation (15%), and test (15%) subsets, with care taken to 
maintain temporal separation between sets. 

4.2 Model Training Configuration 
The network was implemented using MATLAB’s Deep Learning Toolbox with the following 
configuration: 

 Optimizer: Adam 
 Learning Rate: 1e-4 

Data Source Format Sampling 
Rate Input Shape Description 

Strain Data ASC (text log) 50 Hz 5 × 50 (per sec) 3-channel strain + speed + 
heading 

Video 
Frames MP4 (extracted) ~10 fps 10 × 32×32×3 RGB frames aligned with 

strain data 



 Loss Function: Mean Squared Error (MSE) 
 Batch Size: 32 
 Epochs: 100 (early stopping based on validation loss) 

Model checkpoints were saved and evaluated based on validation set RMSE. ONNX export 
was performed post-training for GUI deployment. 

4.3 Evaluation Metrics 
Performance was assessed using: 
 Root Mean Squared Error (RMSE): Measures absolute prediction deviation. 
                                      

               (1) 

 

 Mean Absolute Error (MAE): Complements RMSE by reducing sensitivity to outliers. 
                                            

(2) 

 

 Coefficient of Determination (R²): Assesses model fit to actual load values. 
                                        

(3) 

 

4.4 Baseline Models for Comparison 
To contextualize the performance of the multimodal model, we trained two baseline models: 
 LSTM-only Model: Uses only strain input. 
 CNN-only Model: Uses only video input. 

Comparative analysis illustrates the contribution of video data to overall prediction accuracy. 
 

5. Results and Discussion 

Figure 4 compares the three model configurations—multimodal, strain-only, and vision-only. 
The multimodal network, which fuses strain sequences with synchronized imagery, exhibits 
the smallest error bars and the highest 𝑅𝑅2, demonstrating the closest agreement with reference 
loads. The strain-only model ranks second: it benefits from direct structural response data but 
lacks external context, resulting in wider error dispersion. The vision-only model performs 



least favourably, reflecting the difficulty of estimating load magnitude without internal 
deformation signals. Collectively, the figure highlights that combining mechanical and visual 
information yields markedly higher accuracy and consistency than either modality in 
isolation. 

 

 
Figure 4. Performance comparison of ice load estimation models. The multimodal model 

shows superior accuracy and generalization 

In contrast, the CNN-only model—lacking internal structural cues—performs the worst, 
reinforcing the importance of strain signals for load estimation. However, the inclusion of 
video data significantly boosts the performance of the LSTM strain branch, confirming the 
synergistic value of multimodal fusion. To contextualize the performance of the multimodal 
model, we trained two baseline models: 
 LSTM-only Model: Uses only strain input. 
 CNN-only Model: Uses only video input. 

Comparative analysis illustrates the contribution of video data to overall prediction accuracy. 

CONCLUSIONS 

This study proposed and validated a multimodal deep learning framework for real-time 
estimation of local ice loads acting on the hulls of polar-class vessels. By integrating 
synchronized strain gauge signals and onboard video recordings, the system is capable of 
learning both the internal structural response and the external visual context of ice–hull 
interactions. 
Experimental evaluations demonstrated that the multimodal architecture significantly 
outperforms models based on single-modality inputs, achieving lower RMSE and MAE while 



improving prediction consistency and generalization. These results confirm that fusing visual 
and mechanical cues provides complementary insights for inverse load estimation tasks. 
Looking ahead, future work will focus on: 
 Incorporating Transformer-based fusion mechanisms to capture cross-modal 

dependencies more effectively. 
 Enhancing generalization through training with diverse environmental conditions and 

multiple vessel types. 
 Deploying the model in real-world onboard systems for closed-loop monitoring and 

route optimization. 
The framework introduced in this work represents a step toward intelligent, perception-aware 
structural health monitoring in Arctic navigation and extreme marine environments. 
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