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ABSTRACT 

Declining sea ice coverage in the Arctic is expected to open up routes such as the Northwest 

Passage for commercial shipping for greater parts of the year. However, collisions with ice are 

still a major risk for ships travelling through ice-covered waters. On-board ice experts can help 

with identifying the nearby ice conditions for navigation, but when presented with a field of 

different types of ice that are visually similar, it is difficult to accurately assess the ice 

conditions to plot a safe route. We introduce a multi-sensor system that leverages the strengths 

of sensor fusion to provide unique information that can highlight the differences in ice beyond 

what a human expert can see. Unique data of river ice was collected in February 2025 along 

the shores of the Ottawa and St. Lawrence rivers as an initial test of the system. A small, 

labelled dataset was then created to test the performance of some basic sensor fusion methods 

on a pre-trained image segmentation network. 
 

KEY WORDS: Sensor Fusion; Sea Ice Navigation; Image Processing; Semantic Segmentation; 

Deep Learning. 

INTRODUCTION 

As global warming progresses, the Arctic sea ice concentration is projected to decrease at an 

increasing rate. Consequently, previously impassable routes through the Arctic are becoming 

possible options for commercial shipping, including the Northwest Passage (NWP) through the 

Canadian Arctic Archipelago. For example, a simulation conducted by Somanathan et al. (2009) 

shows that a trip between St. John’s, Newfoundland and Yokohama, Japan can be shortened by 

3500 nautical miles – a 33% decrease – by using the NWP. The significant savings in distance 

travelled and decreased reliance on the Panama/Suez canals make these routes an attractive 

choice for ship operators. Additionally, the increased marine traffic through Canadian waters 

also provides an opportunity for stimulating economic activity in the area. 

Accurate information of the upcoming ice conditions is crucial for safe navigation in ice-

covered waters. According to Garvin (2020), while modern ice charts and satellite imagery are 

crucial for general route planning, on-site assessments from specially trained ice experts are 

still required for real-time navigation. Typically, on-board observations are limited to what can 

be seen ahead by the observer for near-ship ice conditions. However, such observations are 
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somewhat subjective in nature and can become ineffective in adverse weather. Furthermore, 

the human eye is limited to seeing only the narrow spectrum of visible light, losing out on 

important information present in the rest of the spectrum and in the polarization of light. 

For a system to outperform human observations, it is clear that no single sensor can return 

useful information in all environmental conditions. A review by Fung et al. (2017) found that 

in the field of autonomous vehicles, the state-of-the-art perception systems all leverage the 

power of fusing together information from a complementary assortment of different sensors 

(such as cameras, Global Positioning System, radar, and LIDAR for autonomous driving). To 

effectively use the multimodal data collected by different sensors, an appropriate data fusion 

strategy must be chosen. 

In general, there are three different points along the data processing pipeline where fusion can 

occur. Data level or early fusion combines the calibrated data from all sensors and is usually 

applied when the data format is similar across the sensors, such as in the case of multiple 

cameras. This strategy will be used for the experiments covered in this paper. Feature level or 

middle fusion first conducts feature extraction on the calibrated data from each sensor 

separately, before combining the detected features to be further analyzed. Finally, decision level 

or late fusion combines the analyzed output from each individual sensor to generate a single 

decision, and is usually applied to extremely different data formats that are difficult to combine.  

In this study, we propose a novel sensor system using early fusion that can provide beyond 

human-visible information of nearby ice conditions to aid in real-time navigation. We introduce 

a new multimodal dataset of river ice scenes collected by the sensor system in land-based trials, 

and evaluate the performance of several sensor fusion methodologies using the UPerNet 

semantic segmentation network. 

Related Works 

Trials have been conducted in the past to collect data aboard ships travelling through ice, both 

in simulated and true ice conditions. Brown et al. (2023) introduced a suite of cameras and 

sensors – including stereoscopic and 360° cameras, LIDAR, and an electromagnetic sensor – 

that were mounted on the Canadian Coast Guard ship Henry Larsen in March of 2022. The 

study was exploratory, evaluating the performance of individual sensors on sea ice, and thus 

fusion of different sensor outputs was not explored. Zhou et al. (2023) captured optical data by 

attaching a camera to a model ship in an ice basin, which was then used to train YOLACT, a 

deep learning network, to perform instance segmentation on the scene. As the goal was to 

estimate ice concentration and floe size distribution, only three classes (ship, ice, and water) 

were used for labelling this dataset. 

Additionally, there has been increasing interest recently in using computer vision and deep 

learning models to identify and distinguish different types of sea ice for navigational purposes. 

Kim et al. (2019) introduced an object classification network to distinguish between nine 

different categories of ice, trained on publicly available close-range imagery of ice. Zhang et 

al. (2022) modified DeepLabv3+, a state-of-the-art semantic segmentation model, to conduct 

pixel-wise ice image segmentation. The dataset used in the study consisted of manually labelled 

images captured by an optical camera, mounted on an ice-strengthened cargo ship as it travelled 

through the Arctic. 

As the introduced system includes a unique combination of sensors, field trials were conducted 

in February 2025 to collect first-of-its-kind data on river ice along the Ottawa and St. Lawrence 

rivers. The data was processed to create a dataset of spatially and temporally registered images 



from each sensor. A small subset of the dataset was manually labelled for preliminary testing 

of different early fusion strategies using a pre-trained image segmentation network. 

METHODOLOGY 

Hardware Description 

Due to the flexibility allowed via sensor fusion, a number of different sensor types were 

considered for this study. Field tests conducted by Perovich (1994) on several types of sea ice 

surfaces showed large differences in reflectance in the near-infrared wavelength range and in 

polarized light, revealing a sensitivity of sensors that can enhance the ability to identify and 

classify different types of sea ice. Additional inspiration for sensor choices were taken from the 

tangential fields of autonomous driving and robotics. For example, Rankin and Matthies (2010) 

used several different sensors – including colour cameras, polarization cameras, multispectral 

cameras, and various infrared wavelength cameras – to detect mud hazards ahead of an 

unmanned ground vehicle. Emphasis was placed on the ease of integration into a relatively 

self-contained system that can withstand the harsh environment that it will be exposed to. The 

following sensors were included, with additional information on each of cameras available in 

Table 1: 

 Visual (RGB) Camera – this camera most closely resembles what a person can see 

and will also be used as a baseline for comparison. 

 Stereoscopic Cameras – a set of two corresponding visual cameras which, when 

calibrated, can provide depth information about the scene.  

 Thermal Infrared Camera – already widely used on marine vessels and autonomous 

vehicles due to good performance in low-light conditions. The differences in temperature 

between ice and water can help with identification in daylight conditions as well. 

 Polarization Camera – provides information on how light is linearly polarized as a 

result of being reflected off of different surfaces, which can be processed to give additional 

information about features such as the surface angle and roughness. 

 Inclinometer – measures the angle of the sensors relative to the horizon. This 

information can aid in reprojecting the individual camera views to reconstruct the ice scene. 

Table 1. Details of the cameras used. 

Camera 
Field of View 

(Horizontal/Vertical) 
Resolution Framerate 

Visual 

(RGB) 
92°/61° 3840 x 2160 29.97 FPS 

Stereoscopic 92°/61° 3840 x 2160 29.97 FPS 

Thermal 25°/20° 640 x 480 29.97 FPS 

Polarization 19°/16° 1224 x 1024 1 FPS 

 

Three GoPro HERO 12 Black cameras were used to act as visual cameras, with two cameras 

serving as a pair of stereoscopic cameras, and the remaining one acting as the baseline. The 

GoPros were chosen due to their built-in weatherproofing and acceptable optical clarity. A 

FLIR MD625 marine thermal camera and a LUCID Vision Labs Triton polarization camera 

were also chosen for their weather ratings, at the cost of being more difficult to integrate into 



the system. All sensors were attached to a common rigid frame made of aluminum extrusions 

using custom-made mounts. The cameras were carefully placed as to ensure that each camera 

had a clear, unobstructed view of the scene ahead. The sensor frame with the cameras was then 

attached to a tripod to allow for portability and ease of adjustment during data collection. The 

setup as described can be seen in Figure 1a. A digital level was used to measure the angle of 

inclination of the cameras. 

To ensure proper analysis of the collected data, the cameras needed to be synchronized with 

each other. A GoPro The Remote was used to connect to the three GoPro cameras via Bluetooth 

for software synchronization. However, due to the incompatibilities between the different 

cameras and the analog nature of the thermal camera, manual synchronization through clapping 

was used. Considering the 29.97 frames per second rate at which the GoPro and analog capture 

device recorded at, this sets an upper limit on the temporal difference within a set of image 

captures to be about 17 milliseconds. As ships and ice are relatively slow-moving objects, the 

temporal difference between synchronized views was considered acceptable. 

Camera Calibration 

As with any application involving computer vision, camera calibration is important to ensure 

that the objects in view are not distorted by the optical properties of the camera and lens. To 

conduct camera calibration, a routine incorporating the method introduced by Zhang (2000) 

was used. The use of multiple cameras introduces the additional problems of registering the 

different views to a single, common view for analysis. As such, a careful calibration scheme 

was required for this sensor suite. To find the intrinsic parameters of each individual camera, a 

planar pattern was shown in multiple different positions and orientations throughout the field 

of view of the camera. Usually, a simple printed pattern is sufficient for the routine. However, 

the inclusion of a thermal camera required a different method, as it is unable to distinguish 

between printed colours. Thus, a custom calibration board had to be designed that can be visible 

to all cameras at the same time. 

 

Figure 1. a) Full sensor system with each camera labelled. Camera calibration was conducted 

using a rigid asymmetric circle grid board, with an example frame shown from each of the 

synchronized views of b) the thermal camera, c) the polarization camera, d) the baseline RGB 

camera, e) and f) the left and right pair of RGB stereoscopic cameras. 

A review by ElSheikh et al. (2023) identified various designs for thermal camera calibration 

boards that have been previously implemented, and these generally fall within two categories 

– active and passive. Active calibration boards include a powered heating or cooling system to 

create a temperature difference that is visible on the thermal camera. Passive boards rely on an 



external heating source, such as the sun shining on dark areas, to provide the temperature 

difference. Both types of boards can also incorporate materials with different thermal 

emissivities to enhance the thermal contrast. 

Although active boards tend to result in sharper details as a result of the relatively instant 

temperature change, passive boards are far simpler and more portable, especially considering 

weatherproofing for cold, outdoor conditions. Thus, a passive board made up of a composite 

of black acrylic sheets bonded to unfinished aluminum sheets was made. An asymmetrical 

circle grid pattern, required to remove ambiguity in stereoscopic calibration, was laser cut into 

the acrylic as the calibration pattern. Circles were used instead of the classic square 

checkerboard due to their good performance even with blurry features. The calibration process 

as seen from each camera is shown in Figure 1b-f. 

Dataset Acquisition 

A preliminary set of land-based data of river ice was collected in February 2025 at various 

locations along the Ottawa and St. Lawrence rivers, as shown in Figure 2. Although river ice 

formation and dynamics are different compared to sea ice – especially since sections of the St. 

Lawrence Seaway are managed waterways as opposed to free-flowing water – it nonetheless 

provided an opportunity to test out the sensor suite on similar-looking data in a variety of 

environmental conditions. Time spent recording at each location ranged from 5-30 minutes, 

providing hundreds of gigabytes of raw video footage. Data was collected across multiple days 

at a total of six locations, referred to as scenes; Table 2 provides details noted during the 

collection process. Camera calibration was conducted at the start and end of the trip to ensure 

consistency in calibration properties throughout the acquisition process. 

Table 2. Description of data acquisition conditions and details. 

Scene Date Location 
Length of 

Capture 

Lighting/Weather 

Conditions 
Notes 

1 2025-02-11 
Hawkesbury, ON 

(45°37'05.1"N 74°35'54.1"W) 
20 min. Good/Clear 

Stationary ice, tested different 

camera angles looking down 
from bridge 

2 2025-02-12 
Berthier-sur-Mer, QC 

(46°56'06.8"N 70°44'08.8"W) 
30 min. Good/Clear 

Relatively fast-flowing brash 

ice 

3 2025-02-12 
Saint-Jean-de-l'Île-d'Orléans, 

QC 
(46°54'56.0"N 70°53'46.8"W) 

5 min. Poor/Clear 
After sunset; fast-flowing brash 

ice difficult to see in most 
views 

4 2025-02-13 
Montréal, QC 

(45°30'46.7"N 73°31'43.0"W) 
5 min. Medium/Snow 

At dawn with overcast sky and 

heavy snowfall; mostly small 

clumps of thin ice 

5 2025-02-15 
Québec, QC 

(46°46'13.7"N 71°14'54.3"W) 
25 min. Good/Clear 

At sunrise with prominent 

reflection of the sun; relatively 
fast-moving brash ice 

6 2025-02-15 
Rivière-du-Loup, QC 

(47°50'46.4"N 69°34'18.0"W) 
10 min. Good/Clear 

Large swaths of stationary ice 

in foreground with fast-moving 

ice ~400 m from shore 

 

The GoPro cameras were set to record using the Linear lens mode with auto exposure turned 

on. The exposure on the polarization camera was manually set at each location according to 

the lighting conditions, as auto exposure in the provided interfacing software tended to 

overexpose the image. The thermal camera did not have options to adjust video settings other 

than the video colour palette, which was set to red-hot. 



 

Figure 2. Map of the data collection locations in red for each scene as specified in Table 2. 

Data Pre-Processing 

To prepare the dataset, the videos recorded from each camera were initially manually 

synchronized by temporally aligning the synchronization action across each view. Given the 

known framerate of each video, the synchronized frame times can then be propagated 

throughout the entire video for that scene. The synchronized frames were then extracted at 1 

frame per second, matching the framerate of the polarization camera. The dataset size was 

further reduced by taking every 5th or 10th frame depending on the scene, as there was little 

change from frame-to-frame due to the relatively slow-moving ice. Each frame was then 

undistorted according to the calibration parameters found using the Computer Vision Toolbox 

in Matlab (2025). As there is a small shift in perspective between each view due to the physical 

distances between the cameras, each view was warped to that of the baseline camera using 

manually selected control points for each scene. Finally, the frames were cropped and scaled 

to 512 × 512, containing only those pixels which are present across all cameras when warped 

to the baseline view. 

The polarization camera required some additional processing to obtain linear polarization 

information. Using images captured at each of the four polarization angles (0°, 45°, 90°, 135°), 

three Stokes parameters can be calculated as follows: 

𝑆0 = 𝐼0 + 𝐼90 (1) 
𝑆1 = 𝐼0 − 𝐼90 (2) 
𝑆2 = 𝐼45 − 𝐼135 (3) 

where 𝐼0, 𝐼45, 𝐼90, 𝐼135 are the pixel intensities at each of the four polarization angles, and 

𝑆0, 𝑆1, 𝑆2 are the three Stokes parameters that describe the linear polarization state of that 

pixel. Thus, the degree of linear polarization (DoLP) and angle of linear polarization (AoLP) 

can be calculated as follows: 

𝑝 =
√𝑆1

2+𝑆2
2

𝑆0
 (4) 

    

    

    

    

    

 
 
  
  

 
 

                    

         

 

 

 

 

 

 

                                                                           
       

        



2𝜓 = tan−1 (
𝑆2

𝑆1
) (5) 

where 𝑝 is the DoLP and 𝜓 is the AoLP in radians. The resultant polarization images contain 

a significant amount of salt-and-pepper noise due to the sensitivity in measuring polarizing 

light, so a median filter was applied to remove some of the noise. Additionally, histogram 

equalization was applied to each frame to enhance contrast and make details more visible. 

Data Labelling 

In total, there were over 600 synchronized and cropped frames across all scenes. Of those, 

every 5th frame was picked out to be manually labelled, giving a total of 133 fully labelled 

images across the six scenes. The dataset was manually labelled from the cropped view of the 

baseline camera using the Computer Vision Annotation Tool (CVAT) online (2025). Large, 

relatively simple features such as the sky and background were manually labelled and 

propagated with small changes throughout the appropriate frames. More complex features, 

such as small pieces of brash ice, were labelled semi-automatically using the built-in interface 

to the Segment Anything Model (SAM) introduced by Kirillov et al. (2023) with given prompts. 

 

Figure 3. Histogram of class distribution across the labelled images. The bar colours correspond 

to the label colours in the dataset. There is a large bias towards the water class and a lack of the 

sky class in the dataset due to the slight downwards angle during data collection. 

The label classes were based on features described by the World Meteorological Organization 

(2014). In total, 5 classes were used in labelling, with the class distribution across the labelled 

images is shown in Figure 3: 

• Ice Floe – Large, flat pieces of floating ice with relatively smooth texture 

• Brash Ice – Congregations of many different small fragments of floating ice, with 

rough and jagged texture 

• Water – Open, ice-free water 

• Background/Other – Items in frame that are not ice or water, such as trees or hills in 

the background 



• Sky – Areas above the horizon that are not obstructed by other objects or the 

background 

EXPERIMENTS 

Sensor Fusion Methodology 

 

Figure 4. Example images from the (columns from left to right) baseline RGB, RGB-Thermal, 

RGB-Thermal-DoLP, and DoLP-Depth-Thermal + RGB datasets in three different settings: a) 

daylight, b) snow, and c) sunrise. 

An important step in multimodal data fusion is to select an appropriate fusion strategy to use. 

From reviewing the different fusion strategies covered by Brenner et al. (2023), early fusion 

was chosen as it is simple to implement with similar data formats across all sensors, being in 

the form of captured images. Due to the inclusion of depth and thermal data as an addition to 

RGB optical data being extremely prevalent in autonomous driving and surveillance, 

inspiration was drawn from some of the fusion strategies used in those fields. 

The main methods used to fuse the different images together were concatenation and blending 

to create a new 3-channel RGB image. Three new sets of artificial images were created using 

different combinations of sensor outputs and fusion methods. One set was generated by simply 

blending the baseline and thermal images at an equal 1:1 opacity ratio (dubbed as RGB-

Thermal). Another set added polarization data, blending the baseline, thermal, and DoLP 

images at an opacity ratio of 2:1:1 respectively (dubbed as RGB-Thermal-DoLP). A final third 

set used concatenation to include depth data by first creating a false-colour image with DoLP, 

depth, and thermal acting as the “red”, “green”, and “blue” channels respectively. The false-

colour image was then blended with the baseline view at an equal 1:1 opacity ratio (dubbed as 

DoLP-Depth-Thermal + RGB). A few examples of the fused images are shown in Figure 4. 

 



Image Segmentation Network 

The Unified Perceptual Parsing Network (UPerNet) proposed by Xiao et al. (2018) was used 

to benchmark the performance of each set of fused data compared to the baseline. UPerNet is 

based on the Feature Pyramid Network (FPN), which itself fuses together feature information 

extracted by a backbone network at multiple levels. Introduced by He et al. (2016), a ResNet 

encoder with a depth of 50 layers was used as the backbone network due to its good general 

performance in image segmentation tasks. 

The low-light scene 3 in Table 2 was not used in the experiments, as the lack of information in 

most of the images had a detrimental effect on the accuracy of the model, resulting in a final 

set of 125 images. To offset the effects of a small dataset, transformations were applied to the 

images for training. The images were augmented through a combination of random cropping, 

random rotation, adding random Gaussian blur, and random jittering of the contrast and colour 

saturation. To quantify the performance in each experiment, standard semantic segmentation 

metrics of mean intersection over union (mIoU) and mean pixel-wise accuracy (mAcc) were 

used. An 80:20 training-test split was used, giving a total test size of 25 images chosen 

randomly while making sure that the test dataset had at least one image included from each of 

the five tested scenes, as per Table 2. 

RESULTS 

The outputs of the network on the different datasets are shown in a few example images in 

Figure 5. The performance metrics on each dataset in terms of mIoU and mAcc are included in 

Table 3. The network performed well at separating between water and ice in most cases, even 

with the reflection of the sun being present. This is perhaps due to the fact that the reflections 

are only visible on the surface of the water in the dataset. Although water and reflections are 

very visibly different, the network is able to associate reflections with the presence of water. 

There are, however, small inconsistencies mostly with sky being confused with water and the 

border between the background and sky. Additionally, the network struggled when faced with 

background objects beyond the scenery, such as the bridge with a number of fine pillars. Both 

of these results are likely due to their infrequent occurrence during training, as the sky class 

has the lowest distribution and there are only a few frames with non-scenery background labels 

present. 

Quantitatively, the network performed best on the baseline dataset, followed by the DoLP-

depth-thermal + RGB dataset at a significant drop in both mIoU and mAcc. This indicates that 

the current method of early fusion is causing confusion somewhere, making the network less 

capable of accurately making predictions. It is likely that the added noise from the different 

sources have not been effectively filtered out prior to the fusion process, and as a result the 

additional noise is overwhelming any potential information that can be gained from the other 

sensors. The effect of noise on the data can be clearly seen in Figure 4b, where relatively flat 

areas of water and sky in the baseline dataset appear significantly grainier with randomly added 

artifacts in the fused datasets. Overall, early fusion through simple image blending and 

concatenation alone was not effective at extracting additional sources of useful information 

compared to the baseline, based on our preliminary results using the pre-trained UPerNet 

network. 



 

Figure 5. Examples of predictions from UPerNet with mIoU and mAcc metrics compared to 

the labelled ground truth for the three settings shown in Figure 4. The label colours correspond 

to the classes in Figure 3. The network performs well across the board, with some inconsistency 

in the sky. However, the network struggled to process the bridge in b) due to the lack of man-

made structures in the dataset. 

Table 3. UPerNet performance on the different datasets. 

Dataset Baseline RGB RGB-Thermal RGB-Thermal-DoLP 
DoLP-Depth-Thermal 

+ RGB 

mIoU* 0.863 0.781 0.782 0.817 

mAcc* 0.931 0.887 0.882 0.904 

*Best performance is bolded, second best is italicized. 

CONCLUSIONS 

A novel sensor suite consisting of a baseline RGB camera, a pair of stereoscopic RGB cameras, 

a thermal camera, and a polarization camera was constructed and tested on river ice data. In 

the process, a first-of-its-kind multimodal dataset with fully calibrated and registered images 

was created, along with a small subset of labelled images for neural network training. A number 

of different early fusion methods were tested using the pre-trained UPerNet network, although 

none managed to outperform the baseline case, likely due to noise from the different cameras. 

Further image processing, different training and fine-tuning methods, and a more sophisticated 

fusion strategy will likely be needed to make full use of the available sources of information, 

especially during non-ideal conditions for RGB optical data. 
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