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ABSTRACT

The application of Deep Neural Networks (DNNs) for Arctic sea ice segmentation and classification
shows promise but requires large, labeled datasets. Fully annotated Arctic Sea Ice datasets are scarce,
demanding domain expertise and significant manual effort. This study presents an automated approach to
generating labeled datasets by integrating LiDAR data and RGB imagery, focusing on binary ice-water
classification. Data from the GoNorth23 expedition aboard the RV Kronprins Haakon in July 2023 were
used to generate sea ice labels by projecting LiDAR point clouds onto images, assuming all LiDAR returns
originated from ice features. Three preprocessing methods–Thresholding, Morphological operations, and
Otsu-Hybrid–were applied to refine the sparse point cloud data before training a neural network with these
datasets as the ground truth. The preprocessing methods were evaluated against a 361-image manually
labeled dataset, with the Morphological and Otsu-Hybrid methods achieving the highest resemblance (0.60
IoU). While this study serves as a proof of concept rather than optimization exercise, a U-Net model trained
on the Morphological dataset for 30 epochs achieved an IoU score of 0.76 on the manually labeled test
set. In general, the Morphological-trained U-Net exhibited strong recall, whereas the Otsu-Hybrid-trained
model excelled in precision. These results suggest that large-scale labeled datasets can be generated from
different weather conditions with minimal manual effort.

KEY WORDS: Deep neural networks; binary segmentation; LiDAR point cloud; sea-ice; image processing;
automated labeling

I. INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated sucess in various computer vision tasks and are being
increasingly applied to sea ice mapping and monitoring. Several studies have utilized neural networks for
segmenting and classifying sea ice features using optical imagery from icebreakers (Dowden et al. 2021, Li
et al. 2024, Ma et al. 2024, MacMillan et al. 2024, Panchi et al. 2021). Additionally, methods addressing
optical distortions caused by Arctic weather conditions have been investigated (Panchi & Kim 2024,
Pedersen & Kim 2020).

Despite the potential of DNNs for sea ice monitoring, these models require extensive labeled datasets,
which are time-consuming and require domain expertise to create. While large, publicly available datasets
exist for applications such as autonomous driving (Caesar et al. 2019), pedestrian tracking (Leal-Taixé et al.
2015), and object recognition (Lin et al. 2015), comprehensive labeled datasets for sea ice segmentation
remain sparse (Dowden et al. 2021, Li et al. 2024). The lack of annotated datasets is not due to a shortage of
optical imagery, as studies frequently utilize publicly available images and video streams from icebreakers
such as the Nathaniel B. Palmer, Tian’en, USCG Healy, and 50 Let Pobedy (Dowden et al. 2021, Kim
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et al. 2019, Li et al. 2024, Zhang et al. 2022). Rather, the challenge lies in the labor-intensive process of
labeling images.

This study aims to automate the generation of labeled datasets by leveraging sparse LiDAR data. While
the sparsity of this ground truth information presents challenges, similar issues exist in remote sensing
(Maggiolo et al. 2022), medical imaging (Li et al. 2020), and coral segmentation (Alonso et al. 2017).
Using synchronized RGB images and LiDAR point clouds from the research vessel (Veggeland et al.
2025), three datasets were generated automatically. These datasets were then used to train three U-Net
models, whose predictions were evaluated against a manually labeled subset.

II. EXPERIMENTAL SETUP AND DATA COLLECTION

Fig. 1: Left: image of the sensor system
used for dataset generation. Right: Mount-
ing position on RV Kronprins Haakon.

Fig. 2: Illustration of dataset generation.
3D point clouds are projected onto the
optical images to provide sparse ice labels.

In 2023, RV Kronprins Haakon was equipped with an
instrumentation system containing an optical camera and
a Light-Detecting and Ranging (LiDAR) sensor during a
summer research campaign in the Fram Strait. The system
was mounted on the side of the bridge, roughly 17 meters
above sea level, facing downwards to acquire images and
point clouds of the ice conditions on the vessel’s starboard
side. Images of the instrument and its mounting position are
provided in Fig. 1.

The dataset generated for this paper is based on the
methodology described in Veggeland et al. (2025), where a
more detailed description of the sensor system can also be
found. In short, using integrated navigation sensors, the raw
LiDAR data is converted to a global 3D point cloud of the
ice fields surrounding the ship. These point clouds are then
projected onto the image frame of the camera, enhancing
the optical images with sparse information from the LiDAR.
Since the point cloud mostly consists of signals returned
from ice features, these sparse projections can be considered
positive labels in a binary ice/water segmentation problem.
This process is depicted in Fig. 2.

III. METHODS

A. LiDAR Field-of-View (FOV) Mask

Fig. 3: Optical Images with areas outside the LiDAR
FOV Mask Highlighted in Red

LiDAR systems emit beams of light and mea-
sure the time taken to return. However, beyond a
certain range, no meaningful data is returned. This
limitation occurs near the horizon, necessitating a
masking strategy to prevent the misclassification
of the sky as open water. During training, loss was
back-propagated only within the mask, where the
LiDAR data was valid.

Figure 3 displays two examples of optical im-
ages with areas outside the mask highlighted.
Typically, the mask removes distant regions and
portions of the sky, though occasionally clipping
occurs at the start and end of recordings.
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B. Dataset Preprocessing

The LiDAR points were processed in three different ways to address the sparsity of the point clouds.
The following methods were designed to minimize this sparsity and create a more accurate ground truth
representation.

1) Thresholding Dataset

This dataset represents the most basic preprocessing that should be done to create an ice mask from the
LiDAR point cloud. This process, illustrated in Figure 4, forms the basis for the following two methods
and is based on the assumption that if the LiDAR receives a point in the back-scatter, there is ice at that
point. Therefore, if there is a LiDAR point (no matter the intensity) it is converted to an ’ice’ pixel for
the binary ground truth mask.

(a) RGB Image (b) Image of Raw Point Cloud (c) Thresholded Point Cloud

Fig. 4: Threshold Mask Example

2) Morphological Dataset

The second dataset is based on the binary threshold implemented in Section III-B1 with the addition
of one iteration of morphological closing using a 3x3 pixel kernel. This step was taken to fill the holes
that are present in the LiDAR point cloud and involves two steps and is demonstrated in Figure 5. Figure
5c presents a visual representation of the pixels added during this process, highlighted in blue.

1. Dilation: The binary thresholded image’s white regions are expanded by checking each pixel’s 3x3
neighborhood. If any pixel in the neighborhood is white (1), the center pixel is set to white as well.

2. Erosion: After dilation, the white regions are shrunk by again checking each pixel’s 3x3 neighborhood.
Now, the center pixel is set to white only if all pixels in the neighborhood have a value of 1.

(a) Threshold Mask (b) Morphological Mask (c) Pixels Added by Morphological
Closing Highlighted in Blue

Fig. 5: Morphological Mask Example

3) Otsu-Hybrid Dataset

The third and most complex of the datasets was created to improve the quality of the ground truth
label. The optical image is first converted to grayscale and then a threshold value is found using Otsu’s
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binarization as presented in Otsu (1979). This mask is then overlaid with the thresholded LiDAR point
cloud mask presented in Section III-B1 (Figure 4c). If the combined mask contains an ice pixel in both
masks, it is kept as ice. Finally, the same closing process presented in the previous section is applied to
the hybrid mask. The process is visualized in Figure 6, with Figure 6b displaying the histogram of the
grayscale image and the resulting threshold value.

(a) RGB Image (b) Histogram of Grayscale Image
with Otsu’s Threshold Highlighted in
Red

(c) Result of Otsu’s Binariza-
tion

(d) Final Otsu-Hybrid Mask

Fig. 6: Otsu-Hybrid Mask Example

The reasons for the development of the Otsu-Hybrid preprocessing are illustrated in Figure 7. Figure 7b
shows the benefits of the hybrid nature of the mask: The green pixels represent ice only present in the Otsu
mask, while the red pixels illustrate ice in the Threshold mask. By combining only the overlapping areas,
the ice floe boundaries are better defined and there is no misclassification of the sky as sea ice. Figure
7c presents a comparison to the Morphological mask, where pixels only present in the Morphological
mask are highlighted in red. Images with multiple smaller ice floes benefit from the image thresholding
methods in the Otsu-Hybrid method.

(a) RGB Image (b) Hybrid Mask Classification
Green: ice pixels only present in Otsu
mask (Figure 6c). Red: ice pixels only
present in Threshold mask (Figure 4c)

(c) Morphological and Otsu-Hybrid
Mask Comparison
Pixels only present in Morphological
Mask (Figure 5b) highlighted in red

Fig. 7: Otsu-Hybrid Mask Attributes

C. Training

The U-Net model was implemented using the Segmentation Models Pytorch package (version 0.3.4)
(Iakubovskii 2019), employing a ResNet101 encoder (He et al. 2015) pretrained on ImageNet (Deng
et al. 2009). Training was conducted using PyTorch (version 2.0.1+cu117) on an NVIDIA RTX 3060
Laptop GPU with CUDA 11.2. The Stochastic Gradient Descent (SGD) optimizer was utilized along with
a learning rate scheduler, ReduceLROnPlateau. All models were trained with for 30 epochs with a batch
size of 16.
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1) Loss Function

The Binary Cross Entropy (BCE) Loss with logits, formulated below, was used to train each model.

BCEWithLogits =
1

N

N∑
i=1

(
log

(
1 + e−zi

)
− yizi

)
(1)

where N is the number of samples, zi is the logit from the model, and yi is the true label (0 or 1).
An important part of this loss function was the addition of the LiDAR FOV mask. Adding the mask

allows the model to be trained only on areas of the image where the LiDAR is ’active’ and avoid class
imbalance and incorrect labels. For implementation in code, the Binary Cross-Entropy loss was calculated
and then masked prior to back-propagation. Implementation is displayed below, where l represents the
logits (predicted values), y represents the true labels, L(l,y) signifies the loss function (binary cross-
entropy), and m ∈ {0, 1} the mask.

First, the loss is computed to give the loss for each element of the batch:

L = L(l,y) (2)

Then the LiDAR FOV mask is applied to the loss to ensure that only elements where the mask m = 1
contribute to the loss:

Lmasked = L ·m (3)

Finally, the mean loss is calculated then back-propagated, ensuring that the sum of the loss is normalized
by the number of valid mask elements:

mean loss =
∑

Lmasked∑
m

(4)

After the loss was back-propagated, a sigmoid function was applied to the output logits. Then a threshold
of 0.5 was applied to the output of the sigmoid to compute the predicted ice mask.

D. Evaluation

IoU =
A ∩B

A ∪B
=

TP

TP + FP + FN
(5)

DICE =
2 ∗ | A ∩B |
| A | + | B |

=
2 ∗ TP

2 ∗ TP + FP + FN
(6)

Pixel Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

SIPP =
Nice

Ntotal
(10)

To evaluate the training datasets, each
model was trained on each prepro-
cessed dataset and then evaluated on the
manually labeled ground truth. There
are two subsets of the manually la-
beled ground truth: 175 image dataset
of non-cropped images referred to as
’Roboflow’ and a 186 image dataset of
images with the horizon cropped out
known as ’GoNorth’. Ice features such
as meltponds, flooded ice, undersea ice,
and sea ice rubble were all labeled as
’ice’.

Intersection-Over-Union (IoU) (Eq.
5), Dice score (Eq. 6), Pixel Accuracy
(Eq. 7), Precision (Eq. 8), Recall (Eq.
9), and Sea Ice Pixel Proportion (SIPP)
(Eq. 10) were used to assess perfor-
mance. SIPP is defined as the ratio of ice pixels within an image. Only the pixels within the LiDAR
FOV mask are considered. Nice denotes the number of pixels classified as ice and Ntotal is the total
number of pixels within the LiDAR FOV mask.
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IV. RESULTS

A. Evaluation of Preprocessing Methods

1) Comparison to Manually Labeled Datasets

Subset Dataset IOU DICE Pix
Acc

Precision Recall

Threshold 0.54 0.68 0.77 0.83 0.62
GoNorth Morphological 0.66 0.78 0.83 0.81 0.79

Otsu-Hybrid 0.68 0.79 0.85 0.97 0.69

Threshold 0.29 0.42 0.58 0.79 0.30
Roboflow Morphological 0.53 0.66 0.75 0.78 0.59

Otsu-Hybrid 0.52 0.65 0.75 0.90 0.53

Threshold 0.42 0.55 0.68 0.81 0.47
Combined Morphological 0.60 0.72 0.79 0.80 0.69

Otsu-Hybrid 0.60 0.72 0.80 0.93 0.61

TABLE I: Manually Labeled Dataset Evaluation
Bold numbers represent the best performances for each subset between the three preprocessed datasets

Fig. 8: Preprocessed vs. Combined Manually Labeled Dataset

Table I summarizes the results of the
comparisons between the preprocessing
methods and manual labels. To compare
against the manually labeled GoNorth
dataset, the preprocessed datasets were
cropped accordingly. While none fully
replicate manual labels, the Morpholog-
ical and Otsu-Hybrid datasets provide
closer approximations. The IoU scores
for these datasets are similar, yet their
performance characteristics differ. Fig-
ure 8 illustrates that the Morphological dataset reduces false negatives at the cost of false positives, while
the Otsu-Hybrid dataset does the opposite.

(a) RGB Image (b) Threshold Dataset (c) Morphological Dataset (d) Otsu-Hybrid Dataset

Fig. 9: Pixel Classification of Preprocessing Methods Compared to Manual Labels
Green: True Positive (TP), Red: False Positive (FP), Blue: True Negative (TN), Yellow: False Negative (FN)

Figure 9 displays the pixel classifications of the three preprocessing methods when compared to a manual
label and provides a visual confirmation of the statistics in Figure 8. Both the Threshold and Otsu-Hybrid
masks (Figures 9b & 9d) have excessive false negatives but for different reasons. The Threshold dataset
suffers from sparsity while the Otsu-Hybrid dataset misclassifies submerged ice and meltponds as open
water. The Morphological mask has the highest percentage of false positives, as shown by the red pixels in
Figure 9c. Close to the horizon, each preprocessing method produces false negatives due to the definition
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of the LiDAR FOV mask. The edge of the mask is placed too far from the extent of the LiDAR point
cloud, resulting in areas that are manually labeled ice but contain no LiDAR points.

B. Model Training

Fig. 10: Training Losses for each Dataset

Each U-Net model was trained for
30 epochs with a batch size of 16.
Loss curves, illustrated in Figure 10,
reveal that validation loss, while initially
lower, stabilizes as training progresses.
The trend is likely due to the data
augmentation that is applied to training
samples but not to validation sets. Data
augmentation consisted of resizing, flip-
ping, rotating, cropping, and alterations
to brightness and contrast. This was
intended to create a more robust model
and attempt to simulate adverse weather
conditions in the Arctic. Overfitting is most evident in the Morphological dataset, where the training loss
decreases even as the validation loss remains stable. Training loss on the Threshold dataset was the highest,
confirming the challenges of learning from sparse ground truth data.

Loss IOU DICE
Dataset Train Val Train Val Train Val

Threshold 0.49 0.37 0.51 0.30 0.67 0.42
Morphological 0.50 0.32 0.77 0.62 0.87 0.74
Otsu-Hybrid 0.34 0.19 0.70 0.67 0.83 0.79

TABLE II: Training Statistics by Model
Bold numbers represent the best performances for each model between the three preprocessed

datasets

The Morphological and Otsu-Hybrid
datasets facilitated faster learning, likely
because their preprocessing better rep-
resents sea ice features. With some of
the sparsity of the point cloud filled in,
the models are increasingly able to dis-
tinguish between sea ice and water. In
simple terms, this binary segmentation
task is finding a correlation between the
’lighter’ sea ice pixels in the images and the preprocessed ground truth. Thus, the closer the preprocessed
datasets emulate the ’perfect’ ice mask, the quicker these models will learn to properly define the sea
ice objects. Table II shows that while the Morphological dataset achieved the best training IoU, the
Otsu-Hybrid dataset scored highest in validation IoU, corroborating the overfitting seen in Figure 10.

SIPP
Split # of Images Manual Label Threshold Morphological Otsu-Hybrid

Train 1464 - 0.49 0.69 0.45
Validation 317 - 0.34 0.39 0.29
Test 361 0.55 - - -

Fig. 11: Dataset Split Statistics

Table 11 presents the characteristics of the dataset split. The rational behind the split was mostly focused
on minimizing dataset leakage– images within the same recording were placed within the same dataset
split. The Sea Ice Pixel Proportion (SIPP) values for the training and test splits are roughly equal, but are
significantly higher than the Validation set. For future studies, focus should be placed on balancing the
amount of sea ice in each split, minimizing bias.

C. Evaluation of Model Predictions

The trained models were tested against two manually labeled datasets, with the results summarized in
Table III and confusion matrices presented in Figure 12. The Morphological-trained U-Net achieved the
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Subset Dataset IOU DICE Pix
Acc

Precision Recall

Threshold 0.48 0.59 0.74 0.79 0.51
Roboflow Morphological 0.73 0.82 0.86 0.86 0.83

Otsu-Hybrid 0.61 0.72 0.82 0.90 0.62

Threshold 0.64 0.73 0.82 0.87 0.72
GoNorth Morphological 0.78 0.87 0.88 0.82 0.95

Otsu-Hybrid 0.76 0.85 0.89 0.96 0.78

Threshold 0.56 0.66 0.78 0.83 0.62
Combined Morphological 0.76 0.85 0.87 0.84 0.89

Otsu-Hybrid 0.69 0.78 0.86 0.93 0.70

TABLE III: Trained U-Net Performance on Manually Labeled Datasets
Bold numbers represent the best performances for each subset

highest IoU scores, reducing false negatives and improving recall, while the Otsu-Hybrid-trained model
minimized false positives, yielding higher precision.

Fig. 12: U-Net Predictions vs. Combined Manually Labeled Dataset

Figure 13 display a roughly average prediction for each of three different U-Net models given the same
input image. The Threshold-trained model struggles due to the sparsity of the point cloud and motion
blur. The Morphological-trained model overpredicts ice, merging multiple ice floes together. The Otsu-
Hybrid-trained model better delineates floe boundaries but misclassifies submerged floes and meltponds.
Despite masking regions of the sky during training, models still predict ice in bright sky areas, likely due
to the high pixel intensity. Performance in these regions was expected to be suboptimal, as they were
absent from training.

It is important to mention that the work above focuses on the strengths and drawbacks of the automatic
labeling algorithms, but does account for LiDAR limitations. For instance, perfectly flat sea ice may fail
to reflect the emitted signal, resulting in misclassification as open water.

V. CONCLUSION

This study presents three automated methods for labeling Arctic sea ice using LiDAR-derived infor-
mation. A U-Net model trained on each of these datasets was evaluated against manually labeled ground
truth images. While performance did not match state-of-the-art segmentation models, results demonstrate
the feasibility of generating labeled datasets with minimal manual effort. After 30 epochs, a U-Net trained
on the Morphological dataset achieved an IoU score of 0.76 on a 361-image test set.

Quantitative comparisons reveal that the Threshold dataset’s excessive sparsity limits its usefulness. The
Morphological dataset-trained model achieved the highest IoU and recall but tended to overpredict ice
due to motion blur. The Otsu-Hybrid dataset-trained model excelled in defining ice boundaries with high
precision but misclassified meltponds and shadows as open water.
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Optical Label Prediction Pix Class

(a) Threshold-trained Prediction, 50.14%ile IoU

(b) Morphological-trained Prediction, 49.03%ile IoU

(c) Otsu-Hybrid-trained Prediction, 47.92%ile IoU

Fig. 13: Average Image Prediction, ∼50%ile IoU
Gray shading represents predictions outside the LiDAR FOV mask. The last column colors the prediction based on pixel classification: Green: True Positive

(TP), Red: False Positive (FP), Blue: True Negative (TN), Yellow: False Negative (FN)

Dataset selection should align with application needs and goals. For scenarios prioritizing high recall
(e.g. Arctic navigation requiring ice avoidance), the Morphological dataset is preferable. For precise ice
floe boundary deliniation, the Otsu-Hybrid dataset is more suitable. If meltpond segmentation is of interest–
given its correlation with September sea ice extent (Schröder et al. 2014)–Otsu-Hybrid trained models
show potential for their detection and classification.

A. Recommendations and Future Work

For future studies in this field, efforts should be made to increase the accuracy of the automated
labeling system. For example, a devignetting algorithm similar to the one applied in (Sandru et al. 2020)
could greatly increase the accuracy of the Otsu-Hybrid dataset. Other image processing methods, such as
superpixel segmentation as demonstrated in (Alonso et al. 2017), could better emulate a manually labeled
image of sea ice. Furthermore, testing with different ice and weather conditions (fog, snow, rain, sundogs,
etc.) could prove valuable given the variable weather conditions present in the Arctic.

To improve training and inference scores, model architectures can be modified and hyperparameters
tuned. Although this study was designed as a proof of concept, modifying model architectures for sea ice
segmentation and classification has shown promise in the literature (Li et al. 2024, Panchi et al. 2021,
Zhang et al. 2020).
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