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ABSTRACT  

Effective monitoring of sea ice conditions is required for safe maritime operations and research 

on sea ice. Common surveillance systems rely on radar imagery from ships and coastal stations, 

which are often handled through a time-consuming process. Currently existing automated 

systems offer continuous monitoring but are often limited to coarse spatial resolutions and with 

computational efficiency restricting their use for detailed analysis and real-time navigation 

support. We leverage state-of-the-art deep learning-based optical flow architectures for 

continuous, high-resolution surveillance of sea ice dynamics with shipborne and coastal radar 

systems. By employing these architectures, we can accurately capture the relative motion and 

deformation fields of sea ice with considerably lower computational overhead. We demonstrate 

the applicability of the methods with operational radar systems to demonstrate their efficiency 

and accuracy. 
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INTRODUCTION 

Maritime operations in ice-covered waters benefit from accurate, near-real-time observations 

into sea ice dynamics. As Arctic marine transit routes become increasingly viable due to 

changing climate conditions and, for example, as offshore wind energy harvesting expands into 

regions with seasonal ice cover, the ability to monitor and predict sea ice dynamics grows in 

importance. Traditional satellite-based methods (e.g. Ninnis et al., 1986; Thomas et al., 2011 

or RADARSAT Geophysical Processor System), in addition to their expenses, often lack the 

spatial or temporal resolution necessary for local-scale real-time applications. Similarly, digital 

image correlation approaches (Chu et al., 1985; Peters & Ranson, 1982) used typically in 

laboratory settings do not readily transfer to challenging field conditions faced with ship or 

coastal radar systems. This sets a need for robust, high-resolution solutions directly suitable for 

radar imagery captured from ships or coastal radar stations. Despite the importance of radar-

based sea ice monitoring, existing automated methods for full-field motion and deformation 

detection remain sparse. An approach by Karvonen (2016) employs “virtual radar ice buoys” 

based on the Lucas-Kanade optical flow method (Lucas & Kanade, 1981) to track drift in 

automation but is computationally intensive and provides limited spatial coverage of ice 

motion. Furthermore, standard satellite-derived techniques and digital image correlation 
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systems are often confounded by speckle noise and the non-stationary vertical plane of typical 

ship-based radar, rendering them unsuitable for real-time deployment. 

In response to these challenges, we recently presented (Uusinoka et al., 2025a) a deep learning 

tool that harnesses the Recurrent All-Pairs Field Transforms (RAFT) architecture (Teed and 

Deng, 2020) and extended it with a novel temporal resolution tree (TRT) for improved 

robustness against noise and for increased accuracy. Unlike prior work, the framework offers 

full-field motion and deformation estimates, can be operated with minimal hardware, and is 

generalizable effectively to a variety of radar platforms. By integrating recurrent neural 

network components and carefully designed multi-scale temporal features, this method 

provides superior performance even when confronted with the high-frequency noise typical of 

maritime radars. 

Beyond the core deep learning algorithm, this paper emphasizes the possibility for an 

automation pipeline that supports the method in practical settings. We demonstrate that the 

system can continuously intake radar data streams to produce full-field motion and deformation 

maps down to pixel scale in near-real time. This level of automation is of high use in operational 

environments, where consistent coverage and rapid decision-making are needed. We validate 

the versatility and efficiency of our method through case studies featuring ship radar data from 

the RV Polarstern and RV Kronprins Haakon, as well as coastal radar data from the Baltic Sea. 

In each scenario, the system is shown to accurately track ice motion, detect deformation zones. 

We also discuss scalability with parallelized implementations and coarse-graining methods for 

real-time implementations.  

METHODS 

Radar data 

We perform case studies with three different radar datasets (Fig. 1a-c): ship radar data from 

RV Polarstern during the Multidisciplinary drifting Observatory for the Study of the Arctic 

Climate (MOSAiC) expedition (Nicolaus et al., 2022), ship radar data from RV Kronprins 

Haakon (KPH) gathered during the NPI Arctic Ocean Cruise II (Hop et al., 2024), and coastal 

radar (CR) data gathered at the Baltic Sea during March 2011. With the MOSAiC and CR 

datasets, a radar signal digitizing system was deployed as described in Karvonen (2016) and 

Oikkonen et al. (2017). The KPH dataset employs an onboard digitizing system used in 

navigation. With the ship-based radar systems a continuous scans were used to capture local 

sea ice conditions under dynamic navigation, while with the coastal radar a stationary 

installation along the Baltic Sea coastline was used to provide repeated sweeps of nearshore 

ice fields. The radar datasets differ in terms of noise profiles (Fig. 1d-f) and scene complexity, 

and thus provide excellent cases for exemplifying the generalization of the method. 

The first set, MOSAiC, consisted of 144 ship radar frames at 10-minute resolution capturing 

pack ice conditions around the RV Polarstern in the high Arctic over a 24-hour period. The ice 

conditions ranged from stable pack ice to leads and ridges forming along fracture lines. The 

second dataset, KPH comprised 288 frames at 5-minute resolution, and presented frequent 

interactions between discrete ice floes moving, shearing, and colliding over short timescales. 

In nearshore setting, the CR data from the Baltic represents highly compact and deformed ice 

field in the coastal boundary zone between drift ice and fast ice regions (Oikkonen et al., 2016). 

An overview of the image dimensions, pixel resolution, and temporal sampling for these 

datasets is summarized in Table 1. The MOSAiC dataset, originally captured at a radar range 



resolution of 8.33 m, was bilinearly interpolated and averaged to 10 m resolution following 

Uusinoka et al. (2025b). Additionally, distant regions with weak backscatter were cropped out 

in the MOSAiC and CR datasets to avoid spurious estimations in areas of minimal pixel 

intensities. To highlight the deployable nature of our automated system, the KPH and CR 

datasets were used without any preprocessing. The temporal resolutions were chosen based on 

data availability and ice motion intensity to allow the optical flow system to capture the 

displacement fields more accurately. Overall, these heterogeneous data sources allow us to 

demonstrate that the proposed system yields consistent and robust ice motion estimates under 

varying conditions and noise types. 

 

Table 1. Radar data properties for case studies. The MOSAiC dataset was used with spatial 

averaging resulting in the reduced image resolution. 

Dataset 
Cropped 

extent (km2) 

Image 

dimensions 

Pixel 

resolution (m) 

Temporal 

resolution (min) 
Preprocessing 

MOSAiC 100 (1000, 1000) 10 10 
Spatial averaging based 
on bilinear interpolation 

KPH 7 (864, 760) 3.33 5 No preprocessing 

CR 578 (650, 800) 33.33 5 No preprocessing 

 

 

 

Figure 1. (a) to (c) Example frames from each dataset, (d) to (f) corresponding noise patterns. 



Motion estimation with RAFT 

Our motion-detection framework is based on the deep learning architecture Recurrent All-Pairs 

Field Transforms (RAFT), originally introduced by Teed and Deng (2020). RAFT builds dense 

correlation volumes between two frames and uses a recurrent update operator to iteratively 

refine flow estimates. RAFT has shown strong generalization and state-of-the-art accuracy on 

diverse optical flow benchmarks. Nonetheless, directly applying RAFT to sea ice radar imagery 

requires addressing the challenges posed by low signal-to-noise ratios, irregular intensities, and 

small displacements typical for ice movement. 

 

To overcome these challenges, we modify RAFT by introducing a temporal resolution tree 

(TRT). Instead of estimat4ing the optical flow at only one temporal interval, we use coarser 

time steps first (30 min or longer), where larger pixel displacements are more easily identified, 

and then progressively refine the solution at finer time steps (10 min or shorter). This 

hierarchical process relies on forward warping the coarser-resolution flow fields onto the finer 

time-step frames, accounting for the differences in displacement magnitude and image 

coordinates between intervals (Gehrig et al., 2021) and is formalized in Uusinoka et al. (2025a) 

as 

𝐹𝑟→𝑟+1(𝑥) =
∑ 𝑘𝑏 (𝑥 − 𝑔𝑟𝑖

(𝑥𝑟𝑖
)) 𝐹𝑟𝑖

(𝑥𝑟𝑖
)∀𝑥𝑟𝑖

∑ 𝑘𝑏 (𝑥 − 𝑔𝑟𝑖
(𝑥𝑟𝑖

))∀𝑥𝑟𝑖
  

, 

where 𝑔𝑟𝑖
(𝑥) = 𝑥 + 𝛼𝑟𝑖

𝐹𝑟𝑖
(𝑥) estimates the source pixel location adjusted by the flow at 

resolution 𝑟𝑖, 𝑘𝑏(𝑎) = max{0, 1 − |𝑎𝑥|} ⋅ max{0, 1 − |𝑎𝑦|} is the bilinear interpolation kernel, 

and 𝛼𝑟𝑖
= Δ𝑡𝑟𝑖+1 / Δ 𝑡𝑟𝑖

 is the temporal scaling factor. The final high-temporal-resolution 

estimates serve as initial estimate for RAFT’s update operator, which further refines the 

estimated Eulerian displacement field. This ensures that even very small displacements remain 

detectable, despite noise or rapidly varying radar returns. Compared to other methods of 

initializing RAFT, TRT consistently yields higher accuracy with minimal extra computation 

time. 

Deformation calculation 

Once pixel-scale Eulerian displacements are obtained between consecutive radar frames, we 

compute Lagrangian measures of deformation to characterize sea ice evolution of 

deformation processes, including ridging, rafting, and fracturing. We form Lagrangian 

trajectories by bilinearly interpolating the displacement fields over time, effectively tracking 

each ice parcel. We define the trajectories in the simple form of  

 

𝐗(𝑖, 𝑗, 𝑡𝑛+1) = 𝐗(𝑖, 𝑗, 𝑡𝑛) + 𝐅̃𝒕𝒏
(𝐗(𝑖, 𝑗, 𝑡𝑛), 

 

where 𝐗(𝑖, 𝑗, 𝑡) is a material point for which we define the trajectory, and 𝐅̃𝒕 is the bilinear 

interpolation map over the flow field 𝐅𝑡. Subsequent integration yields a material path for each 

pixel, and the deformation tensor is determined by mapping these trajectories back to their 

reference coordinates (Gurtin, 1982). The Lagrangian strain measures thus retain a history of 

the motion. 

 

In this work, when referring to deformation, we use the measure of total deformation rate that 

is estimated based on velocity gradients associated with each deformation cell. As described in 



detail in Uusinoka et al. (2025b), divergence rate, 𝐸̇𝑑 (ice field opening or converging),  shear 

rate, 𝐸̇𝑠 (sliding between ice parcels), and total deformation rate, 𝐸̇𝑡, are respectively estimated 

from the principal values, 𝐸1 and 𝐸2, of the Green-Lagrange strain tensor, 𝐄, as 

𝐸𝑑 = 𝐸1 + 𝐸2,  𝐸𝑠 =
1

2
(𝐸1 − 𝐸2),  and 𝐸𝑡 = √𝐸𝑑

2 + 𝐸𝑠
2 

Automated system architecture 

We encapsulate our motion estimation method within a workflow (Fig. 2) designed for 

continuous data ingestion and minimal operator intervention. The system accepts a live feed of 

radar images and processes each new frame as soon as it is available. The incoming frames are 

buffered when needed to construct TRT at multiple time resolutions. A monitoring routine 

checks for missing or corrupted frames, and if errors arise, the pipeline reverts to lower 

temporal resolutions. This error-handling mechanism prevents abrupt disruptions in flow 

estimation and mitigates the impact of data dropouts. Our framework also logs intermediate 

output (correlation volumes, motion fields, trajectories, and deformation fields) in an archive, 

enabling retrospective quality assessments without halting the real-time operations. The final 

output can be visualized onboard for navigation decisions, integrated into a central forecasting 

center for ice management, or stored for subsequent scientific analysis. 

 

The entire pipeline runs on a single CPU and GPU in standard configurations. In this work, all 

experiments were performed with a single NVIDIA V100 GPU and one CPU, with ICE-RAFT 

using a previously trained deep learning model described in Uusinoka et al. (2025a). No 

specialized cluster computing is required. Implementation leverages open-source libraries for 

GPU-accelerated convolutional neural networks and image manipulation. If processing 

demands increase, users may scale vertically by assigning each layer of TRT to a separate GPU. 

We use minimal parameter tuning within the neural network as our experiments indicate that 

Figure 2. Visualization of the data pipeline from radar data checks to Lagrangian deformation 

estimates as an extension of the framework in (Uusinoka et al., 2025a). 



the default model, trained according to Teed and Deng (2020), performs robustly on sea ice 

data without any further finetuning of the model weight. However, domain-specific finetuning 

is straightforward if particularly noisy or specialized radar setups are encountered. 

 

RESULTS 

Displacement fields 

Fig. 2 presents the spatial distribution of cumulative Eulerian displacement estimates over 24-
hour period for each of the three radar datasets. For the MOSAiC data (Fig. 2a), the proposed 

method captures the motion of large rigid ice bodies with minimal noise, while the 

discontinuities in the displacement field align well with visually identified leads, ridges, and 

fractures (see Fig. 1a). Despite the spatially and temporally inconsistent noise signature in this 

dataset (Fig. 1d), the displacement estimates accurately track ice movement, indicating that the 

neural network remains robust against such variability. Notably, the method detects even very 

slow displacements, down to the order of ten meters over the 24-hour period, which surpasses 

earlier conservative lower bound estimate for the method reported by Uusinoka et al. (2025a). 

This improved accuracy reflects the relatively simple rigid-body motion in winter pack ice 

conditions, where distinct fracture lines delineate clearly separable ice floes. 

In contrast, the KPH dataset displays a more complex displacement field comprising multiple 

floes with varying velocities and directions, as well as a region of anchored ice that appears 

stationary relative to the ship’s position. Although such complexity involves frequent collisions 

and shear zones, the method consistently reproduces the observed displacement gradients, 

confirming its ability to handle challenging these types of highly dynamic scenarios. The main 

artifact seems to arise in open water regions, which appear almost free of any pixel intensities 

in the radar imagery (Fig 1b and 1e) and consequently yield artificially high displacement 

values. This effect stems from a lack of consistent speckle or backscatter that the gradient-

based neural network can match. Additionally, the RAFT+TRT combination is trained with the 

inclusion of high-frequency noise over the training set for which the stationary features are 

expected to include some noise patterns. This issue is partially mitigated in the MOSAiC and 

Figure 3. The Eulerian displacement fields of the three radar datasets summed over each pixel 

during a 24-hour period. 



CR datasets by the presence of at least some uniform background noise that correlates with the 

icescape. Nonetheless, in ice-covered areas with less open water, the predicted motion fields 

exhibit close agreement with manual interpretations. 

The CR dataset, again, demonstrates that the method accurately captures diverging and 

shearing parts of the ice motion, most prominently along a quasi-linear deformation zone. On 

top of this complex motion pattern, signs of compression and granular-like interactions are 

detected away from the main deformation zone. Regions of stationary backscatter, mainly 

coastal land or immobile fast ice, remain classified with effectively zero displacement, 

confirming that the system handles static features appropriately. Although each radar dataset 

differs in terms of noise profiles and ice conditions, the automated network detects ice motion 

accurately in all three cases with few artifacts, pointing to strong generalization of the 

approach. 

Deformation fields 

 

Fig. 3 shows Lagrangian total deformation rates averaged over each deformation cell during 

the corresponding 24-hour periods. These fields appear largely free of background noise, while 

localizing deformation zones with considerable precision. For the MOSAiC dataset, the major 

fracture line evident in Fig. 1a is clearly highlighted, accompanied by smaller ridges and leads 

in the vicinity. The radar’s coverage also reveals ridging near the edges of the scanned region 

even though the quality of the radar signal is already considerably weaker at these areas. 

 

In the KPH dataset, the evolution of ice floes become clear when viewed through deformation 

rates. Collisions between the rigid floes in the upper-left corner, which was initially interpreted 

as loosely consolidated pack ice, become evident from the velocity gradients. While open water 

regions produce inflated displacement estimates that result in slightly elevated deformation 

rates, the method is still able to distinguish discrete floes and their interaction zones with high 

spatial accuracy. Similarly, in the CR data, the prominent fracture zone appears as a region of 

intense deformation, and smaller clusters of mix-mode deformation also emerge in the vicinity 

of the main zone. Although these estimates match the manually observed ice behavior 

Figure 4. Lagrangian deformation rates summed over each deformation cell during a 24-hour 

period. 



reasonably well, the temporal sampling and the corresponding large per-pixel displacements in 

this nearshore setting occasionally reduce spatial sharpness. This indicates the possibility of 

estimating deformation even with smaller temporal resolutions. Overall, however, the 

Lagrangian deformation fields affirm that the method delivers an accurate description of both 

large-scale and localized deformation processes in varying ice conditions, data types, and noise 

patterns. 

 

Data pipeline performance 

 

Table 2 summarizes the runtimes of each data pipeline component for the three datasets. 

Estimating motion with the RAFT+TRT combination takes between 1-2 seconds per frame, 

even with three temporal-resolution layers in the TRT, indicating the feasibility of real-time 

processing even when considering the rate of the radar cycle. Compiling these flow fields into 

a single, continuous displacement record consumes an additional 0.2-0.4 seconds. The largest 

computational cost arises from the trajectory formulation component, which can reach 

16 seconds per frame with the MOSAiC dataset at the highest spatial resolution, due to the one 

million trajectories requiring bilinear interpolation. As the bilinear interpolation is performed 

with a factor of 10 in the 2D spatial domain, we interpolated displacement fields consist of 

100 000 000 datapoints. Coarse graining the displacement fields, applying parallelized 

implementations, or optimizing the implemented code could substantially lower this overhead 

without compromising accuracy. Deformation calculations, which involve mapping velocity 

gradients to Lagrangian strain measures, add 3-5.5 seconds. These findings indicate that total 

runtimes range from approximately 12 seconds per frame for CR to around 23.5 seconds per 

frame for MOSAiC. Although radar cycles take only a few seconds, the digitizing system is 

typically run to generate higher quality radar data every few minutes. For the digitized radar 

data, the processing speed with even the MOSAiC data is sufficient for continuous or near-

continuous deployment on a single CPU and GPU. Real-time operational use is thus deemed 

viable in practical situations. 

 

Table 2. Runtimes for each component in the data pipeline. 

Dataset 

Motion 

estimate 

(sec per 

frame) 

Number 

of TRT 

layers 

Displacement 

maps (sec per 

frame) 

Trajectory 

maps (sec 

per frame) 

Number 

of 

trajectori

es 

Deformation 

maps (sec 

per frame) 

Total 

runtime 

(sec per 

frame) 

MOSAiC 1.86 ± 0.92 3 0.43 ± 0.20 15.67 ± 0.70 1000 000 5.45 ± 0.25 23.41 

KPH 0.97±0.35 3 0.22 0 ± 0.14 10.0 ± 0.6 656 640 3.78 ± 0.11 14.97 

CR 1.65 ± 0.72 3 0.29 ± 0.15 7.0 ± 0.56 520 000 2.92 ± 0.11 11.86 

 

CONCLUSIONS 

In this work, we demonstrate that a deep learning-based optical flow system, extended by a 

temporal resolution tree (TRT) and coupled with an automated data pipeline, effectively 

captures detailed sea ice dynamics suitable for operational surveillance across diverse radar 

imaging scenarios. By applying the extended form of the RAFT architecture to shipborne and 

coastal radar datasets, we capture coherent displacement fields with minimal noise even in the 

presence of complex ice motions or varying radar backscatter. The results confirm that 

important spatial discontinuities in ice motion for navigation or surveillance purposes, such as 

leads, ridges, and fractures, are recognized reliably. While our results confirm method accuracy 



qualitatively, future work should include quantitative validation regarding ice convergence and 

divergence characterization. 

 

 

The proposed framework handles a range of radar image qualities and temporal sampling 

intervals, while retaining near-real-time performance. Motion estimation can be carried out in 

under two seconds per frame on a single GPU with one million datapoints, showing promise 

for integration into operational systems. The largest computational costs occur in trajectory 

formulation and subsequent deformation calculations, but these can be substantially reduced 

through optimization techniques. As a result, the method can scale to larger spatial domains or 

denser grids without compromising the resolution or accuracy of the estimated flow fields. This 

approach opens new avenues for better situational awareness and safety in ice-covered waters, 

supporting navigation, surveillance, and scientific research. Future research will focus on 

refining these computational steps, optimizing the pipeline efficiency, and exploring network 

training strategies to enhance robustness against the non-traditional radar noise patterns. 
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