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ABSTRACT  

Arctic shipping routes are becoming increasingly viable due to climate change and the 

associated reduction of multi-year sea ice, creating both opportunities and challenges in global 

transportation. Effective path planning in ice-covered waters is essential to ensure navigational 

safety, minimize environmental risks, and optimize operational efficiency for vessels operating 

in these hazardous and dynamic environments. This proof-of-concept study aims to address the 

complexity of ice navigation by developing a unified multivariant path planning algorithm for 

areas with dynamic sea ice cover. We present a dynamic A* algorithm that integrates a custom 

cost function to account for ship-specific constraints and dynamic ice conditions in real-time. 

This custom cost function incorporates traversability of ice by evaluating ship resistance in 

open- and ice-covered water depending on the ship’s characteristics, ice state, water salinity 

and temperature of ice, and ocean water. The algorithm integrates ship-specific constraints, 

such as ship’s geometry, while also addressing simulated ice drift due to ocean currents and 

wind, ensuring that the path planning algorithm adapts to the dynamic environment. In this 

work, the position of sea ice cover is updated at each step using motion prediction from semi-

realistic, simulated local observations and ice thickness profiles. We demonstrated the 

effectiveness of our algorithm in multiple scenarios that may arise in complex path planning 

situations. In addition, we have tested our method on a set of synthetic maps created from 

satellite imagery. 

KEY WORDS: Dynamic A*; Ice Navigation; Ice Drift; Traversability Analysis 

INTRODUCTION 

The Arctic marine environment is undergoing significant changes due to the rapid loss of multi-

year sea ice, leading to longer navigation seasons and access to previously unreachable areas. 

This has resulted in increased ship traffic in ice prone areas, raising concerns about maritime 

safety and management in the region (The Arctic Institute, 2023; Henke et al., 2024; WWF, 

2024; Belfer Center, 2025). Given the dynamic and harsh nature of the Arctic environment, 

effective path planning is crucial for safe navigation. A robust path planning algorithm that can 

adapt to rapidly changing ice conditions, weather patterns, and other environmental factors can 

maximize the potential of Arctic shipping routes while minimizing operational risks. 

The topics of traversability analysis and path planning have been extensively studied across 

multiple domains, with significant focus on ground-based systems as highlighted by Beycimen, 

Ignatyev, and Zolotas (2023). However, most conventional approaches often prioritize 
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obstacle-free navigation, neglecting critical traversability analyses, particularly in ice-covered 

waters (e.g., Bergman et al., 2020; Chiang et al., 2018; Shan et al., 2019; Choi et al., 2015; 

Aksakalli et al., 2017). While collision avoidance remains a core focus in these traditional 

maritime path planning, factors such as ice thickness and ship’s interaction with rapidly 

changing ice cover are insufficiently addressed. While some works consider dynamic obstacles 

(e.g., Shah and Gupta, 2020; Stilman et al., 2008; Wu et al., 2010), they do not consider the 

physical interaction between the vehicle and moving ice fields.  

Additionally, in the field of autonomous surface vehicle (ASV), path planning and collision 

avoidance have undergone extensive research, with many works focusing on static 

environments (Bergman et al., 2020; Shan et al., 2019) and some works that consider other 

floating objects as obstacles (Chiang et al., 2018; Zhuang et al., 2011; Kuwata et al. 2013). 

However, these approaches may not be directly applicable in areas with floating sea ice, where 

some collisions are inevitable. Choi et al. (2015) employed an uncertainty-based route planner 

for ship path planning, utilizing aggregated data on ice conditions obtained from satellite 

imagery. While their work encompasses planning pathways spanning several thousand 

kilometers, the absence of a dynamic map necessitates the incorporation of a local planner (10-

20 Nm around the ship). This has been addressed by a proposed motion planner using data 

from marine radar imaging and bidirectional rapidly exploring random trees (RRT) (Hsieh et 

al., 2021). Gash et al. (2020) constructed a graph from a post-processed overhead image of an 

ice field, employing a morphological skeleton. Subsequently, the authors employed the A* 

algorithm to compute a path in the generated graph. Notably, the methodologies presented in 

Gash et al. (2020) and Hsieh et al. (2021) demonstrate good performance in simpler low 

concentration ice fields. However, challenges persist in addressing areas with high ice 

concertation and spatiotemporal ice drift. Schaetzen et al. (2023) in their paper have made 

significant strides in addressing ship interaction with smaller ice floes although without explicit 

consideration for traversing and breaking through the ice. Moreover, the smaller ice floes are 

treated as static entities within the local planning timeframe. This leaves a gap in the latter 

approach when confronted with the dynamic nature of larger ice floes and necessitates further 

exploration and refinement for a more realistic solution.  

Segal et al. (2020) and Dammann et al. (2018) proposed methods to evaluate path traversability 

based on ice roughness in the Arctic; however, their research focuses solely on movement over 

ice rather than navigation through ice, such as by ships. Lu et al. (2024) introduced the high-

traversability and efficient path optimization (HTEPO) strategy, leveraging an enhanced A* 

algorithm for efficient pathfinding in complex seabed environments for deep-sea mining 

vehicles. However, it lacks adaptability to dynamic maps and its traversability analysis is not 

directly applicable to ship navigation through ice-covered regions. Yaqing et al (2023) 

presented an algorithm where the ship is escorted by an icebreaker, although it is noteworthy 

that they did not delve into considerations of ice thickness or into calculating the traversability 

of ice cover. Tran et al. (2023) proposed a route optimization algorithm for vessels navigating 

ice-covered waters, incorporating carbon intensity based on ship resistance and ice thickness, 

while also factoring in ice type and associated risk levels for path planning. However, the model 

lacks a precise traversability index and does not account for the dynamic motion of ice. Zhang 

et al. (2019) developed a neural network-based model to predict energy efficiency and proposes 

an optimal route to minimize costs and environmental impact. While the model demonstrates 

strong alignment with real-world navigation, it does not account for dynamic map changes in 

Arctic conditions.  

This paper tries to address these research gaps by incorporating ship-ice resistance 

(traversability) and ice motion (dynamicity) while focusing on independent navigation in ice. 



Ship-specific constraints like turning rates have been omitted, the focus on dynamic 

environmental factors supports global-scale path optimization over distances exceeding 100 

nautical miles. 

METHODOLOGY 

This section outlines the methodology used in the study. First, the path planning algorithm is 

introduced, and its functionality explained. Next, the custom cost function is detailed. Finally, 

the effectiveness of the algorithm is demonstrated using synthetic, dynamically changing 

traversable maps.  

An A* algorithm (Hart et al., 1968) is implemented that searches the optimal path through a 

dynamic map (temporal sea ice positions) using a custom cost function. This cost function 

incorporates both open water resistance and the traversability resistance when the ship passes 

through traversable ice floes. The map is programmed to dynamically update the position of 

ice, adjusting at each time step based on the ship's current location during the search and the 

distance it has traveled over that duration. The proposed path planning algorithm can be 

systematically categorized into the following key components: 

Dynamic A* Path Planning Algorithm: 

The original A* search algorithm (for details refer to Hart et al., 1968) was implemented with 

some modifications, primarily incorporating additional cost function (traversability) and a set 

of time varying maps while searching for the optimal path. The algorithm aims to find a path 

(list of nodes) from the start position (start_node) to the goal position (end_node) with the 

smallest cost by searching among all possible paths within dynamic maps. 

This modified A* search algorithm incorporates dynamic map updates and traversability costs 

for pathfinding in changing environments. This modification is particularly valuable when ice 

conditions change over time. The algorithm maintains two sets: an open set containing nodes 

to be evaluated and a closed set for already evaluated nodes. It uses a cost function f(n) = g(n) 

+ h(n), where g(n) represents the actual cost from the start node to the current node, and h(n) 

is a heuristic estimate of the cost from node n to the end_node. The algorithm periodically 

updates the grid map by utilizing a set of temporal datasets denoted by {𝑀}, which includes 

predictive positions of ice floes across multiple time intervals. The map is updated based on 

the update frequency k. 

In this traversability-aware path-finding algorithms, the equation 𝑔temp← g(u)+d (u, v) ⋅ τ(v) 

calculates the temporary path cost to node v (neighbor node) through node u. This formulation 

integrates three critical components: g(u), the accumulated cost from the start node to the 

current node u; d (u, v), the base distance between adjacent nodes; and τ(v), a traversability cost 

multiplier that accounts for ship resistance in ice. 

Pseudocode for dynamic A* path planning algorithm: 

Input: start_node, end_node, set of maps{𝑀} 

Output: path 𝑃 

 

 

𝐀∗(𝑠𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒, 𝑒𝑛𝑑_𝑛𝑜𝑑𝑒, {𝑀}): 

  Initialize: 

    open set ← {𝑠𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒} 

    closed set ← ∅ 

    𝜕𝑡 ← 0 

 

 

 

 

map-update time  



    𝑔(𝑠𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒) ← 0 

    ℎ(𝑠𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒) ← 𝐻(𝑠𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒, 𝑒𝑛𝑑_𝑛𝑜𝑑𝑒) 

    𝑓(𝑠𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒) ← 𝑔(𝑠𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒) + ℎ(𝑠𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒) 

    map ← {𝑀(𝜕𝑡)} 

    ∀𝑛 ∈ Map: 𝜏(𝑛) ← map (𝑛) 

    𝐰𝐡𝐢𝐥𝐞 open set ≠ ∅ 𝐝𝐨 

      𝑢 ← arg min
𝑛∈open

 𝑓(𝑛) 

      𝐢𝐟 𝑢 = 𝑒𝑛𝑑_𝑛𝑜𝑑𝑒 then 

        return ReconstructPath(𝑢) 

      end if 

      open set ← open set ∖ {𝑢} 

      closed set ← closed set ∪ {𝑢} 

      𝐢𝐟 |ReconstructPath(𝑢)|mod𝑘 = 0 𝐭𝐡𝐞𝐧 

        UpdateMap(𝑢,   {𝑀}) 

      end if 

      ∀𝑣 ∈ Adj(𝑢): 

        𝐢𝐟 𝑣 ∈ closed set 𝐭𝐡𝐞𝐧 𝐜𝐨𝐧𝐭𝐢𝐧𝐮𝐞 

        end if 

        𝑔temp ← 𝑔(𝑢) + 𝑑(𝑢, 𝑣) ⋅ 𝜏(𝑣) 

        𝐢𝐟 𝑣 ∉ open set 𝐭𝐡𝐞𝐧 

        open set ← open set ∪ {𝑣} 

        end if 

        𝐞𝐥𝐬𝐞 𝐢𝐟 𝑔temp ≥  𝑔(𝑣) 𝐭𝐡𝐞𝐧 𝐜𝐨𝐧𝐭𝐢𝐧𝐮𝐞 

        parent(𝑣) ← 𝑢 

        𝑔(𝑣) ← 𝑔temp 

        ℎ(𝑣) ← ℎ(𝑣, 𝑒𝑛𝑑_𝑛𝑜𝑑𝑒) 

        𝑓(𝑣) ← 𝑔(𝑣) + ℎ(𝑣) 

𝐫𝐞𝐭𝐮𝐫𝐧 ∅ 

𝑔(𝑛) cost of the node n 

ℎ(𝑛) heuristic cost of the node n 

𝑓(𝑛) total cost of the node n 

 

𝜏(𝑛) traversability cost for node n 

 

u – current node 

 

 

 

 

 

k – map update frequency  

 

 

 

𝑣 – current node neighborhood  

d is a travel distance cost between 

neighboring nodes u and v 

 

 

 

ReconstructPath(𝑢): 

  𝑃 ← ⟨𝑢⟩ 

  𝐰𝐡𝐢𝐥𝐞 ∃ parent(𝑢) 𝐝𝐨 

    𝑢 ← parent(𝑢) 

    𝑃 ← ⟨𝑢⟩. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑃) 

𝐫𝐞𝐭𝐮𝐫𝐧 𝑃 

 

UpdateMap(𝑢, {𝑀}): 

  𝜕𝑡 = |ReconstructPath(𝑢)|//𝑘 

return {𝑀(𝜕𝑡)} 

 

 

Cost Function: 

The methodology detailed assumed a uniform ice floe thickness for simplified simulation 

process. Different ice floes can have different thickness. The traversal cost integrates both the 

ice-to-open-water resistance ratio and path distance, quantified through a comprehensive 



traversability metric. To ensure goal-oriented navigation, distance heuristic was incorporated 

to prioritize paths advancing toward the target destination. This approach balances efficiency 

and safety by leveraging adaptive path planning informed by ice resistance dynamics and 

spatial constraints. 

Heuristics Cost 

Distance heuristics were used in the A* algorithm to lead the path towards the goal. A 

straightforward form of Euclidean distance heuristics was implemented according to: 

H (x, y) = W ∙ √(xgoal −  x)
 2

 + (y
goal 

−   y)
 2

 
(1) 

where, (x, y)  is the current node coordinate and (xgoal, ygoal
)  is the goal node coordinate. 

Thus, the calculated heuristics cost of the current node H (x, y) is represented in pixel distance 

from the goal node. We set the weight value 𝑊 assigned to the H (x, y) heuristics cost to one 

as default. 

Traversability Cost: 

One of the main contributions of this paper is to enhance the traditional A* algorithm with 

traversability cost. This cost was computed by evaluating the ratio between the resistance of a 

ship on a traversable path and their resistance in open water, considering a constant ship speed. 

The ship resistance was determined using the methodology outlined in the papers from 

Keinonen et al. (1991) and Frederking et al. (2003). In this paper, the same notations as in 

Frederking et al. (2003) were used. Based on that, the total resistance of a ship in level ice was 

calculated by 

Rice = Rice(Vms = 1) + Rice(Vms>1) + Rwater (2) 

where, Rice is the total resistance of the ship in the level ice.  

The ice resistance for ship velocity normalized to 1 m/s Rice(Vms=1) is calculated based on 

Eq. (3) that is, 

Rice(Vms = 1) = 0.015 HC·S   (3) 

    ×B0.7L0.2D0.1ℎ𝑒𝑞
1.5

 ship size term   

    ×(1 −  0.0083(T + 30)) friction term   

    ×(0.63 + 0.00074σf) ice strength term   

    ×(1 + 0.0018(90 −  γ)1.6)(1 + 0.003(β −  5)1.5) bow term   

Here, the hull condition factor is represented by HC  with value of 1, the factor for water 

salinity is denoted by S with a value of 0.85, the ship beam is given by B with a measurement 

of 22 meters, the waterline length of the ship is denoted by L which is equal to 147 meters, the 

draft is represented by D with a value of 6.9 meters, the equivalent ice thickness is expressed 

as ℎ𝑒𝑞 in meters and was defined as in Frederking et al. (2003) which takes into account a 

constant snow thickness of 0.1 meter, the ice surface temperature is represented by T  and was 

assumed -10 degree Celsius, the flexural strength of ice is denoted by σf  (350 kPa), the 

average bow flare angle at the waterline is expressed as γ  (21 degrees), and the average 

buttock angle at the waterline is represented by β (32 degrees). It is important to note that all 

the terms are multiplied together. 

Ice resistance for ship velocity greater than 1 m/s Rice(Vms>1) is calculated by 



Rice(Vms>1) = 0.009HC(ΔV/(gL)0.5)  (4) 

    ×B1.5D0.5Hi ship size term   

    ×(1 −  0.0083(T + 30)) friction term  

    ×(1+0.0018(90 −  γ)1.6)(1 + 0.003(β −  5)1.5) bow term   

 

where, ∆V = V −  1(m/s) and g = 9.81m/s2 

 

Open water ship resistance was calculated using Eq. (5). 

Rwater = 𝛿  1.1(0.025Fn + 8.8Fn
5)/1000 (5) 

where, 

    𝛿 = ρ
w

LBDCb(tonnes)  

    ρ
w

 = 1.03 tonnes/m3  weight density of sea water 

    Cb block coefficient 

    Fn= V/(gL)0.5 Froude number 

 

The final cost for each ice floe node can be expressed as: 

𝜏(𝑛) = Rice/Rwater (6) 

where, 𝜏(𝑛) is the ice floe traversability cost with 𝜏(𝑛) = 1 when the ship is in open water. 

Map Creation: 

To create a semi-realistic input map, real-world satellite images are used, converting them into 

a 2D ice-water binary maps. To enhance the complexity of the ice field, instead of stitching 

several satellite tiles together, a rectangular area of around 10 × 6 Nm was selected from the 

satellite image, and it was upscaled to a larger area (100 × 60 Nm). The selection of this area 

was based on a qualitative assessment, considering increased complexity and the availability 

of multiple traversable paths as perceived by human observation inspective of land ice-, sea 

ice-, and cloud coverage. Three Sentinel-2 images (RGB - channels) of shape 

1600 × 900pixels were acquired from Copernicus (Copernicus Sentinel data, 2024), focusing 

on the coast of Greenland. Thus, after upscaling, each pixel corresponded to a single cell with 

an area of 0.4166 Nm² in the grid map which was then utilized by our path planning algorithm. 

The resulting RGB image was initially converted into a grayscale representation for further 

processing. All areas near black were assigned a value of zero, representing open water, while 

brighter surfaces were set to 255, indicating level ice and ice floes. In addition, to eliminate 

any thin connecting joints between ice floes while preserving the shape of larger ice floes, we 

applied erosion followed by dilation morphological operations on the image (for details refer 

to Serra, 1982).  

The resulting binary image is shown in Fig. 1, where different ice floes were assigned to 

different thickness as explained below. 

Thickness Map: 



Ideally, a thickness map should be derived using sensor fusion, combining e.g., high-resolution 

lidar measurements from ships for local characterization, with marine/coastal radar(s) and 

satellite data providing broader spatial coverage. In the absence of actual thickness data, for 

simplicity, a synthetic thickness map was created by randomly assigning ice thickness values 

ranging from 0.1 meters (new ice) to 3 meters (multiyear ice) across various ice floes based on 

data from Polar Portal (2025). The broader range was chosen to enhance variability in the 

available traversable paths, allowing for a more comprehensive evaluation of potential routes. 

This approach created a spatially uniform yet random distribution of ice thickness across the 

map (see Fig. 1).  

 

   

Figure 1. Synthetic map creation from satellite data, showcasing the transformation from the 

original RGB image to the thickness map and traversability map across various sites. 

Traversable and Obstacle Map: 

Following the generation of the thickness map, ice floes were categorized as traversable or 

non-traversable based on their resistance to ship movement relative to open water resistance 

based on Eq. 6. This classification integrates both ice thickness and ship-specific characteristics. 

Under the assumption of constant ice material properties (only for the algorithm demonstration 

purposes), thickness becomes the critical variable governing traversability.  

A traversability threshold was established by comparing ice resistance to open water resistance. 

Ice floes with resistance values greater than ten times the values compared to open water 

resistance were assumed non-traversable. These resistance values formed the basis of our 

traversability cost function, which quantifies navigation challenges across varying ice 

conditions. Figure 1 provides a representative visualization of this classification process 



applied to generate the synthetic ice map. 

Dynamic Map: 

Ideally, the information about ice drift should be utilized in field applications. In this study, to 

account for the dynamic nature of the ice cover, a function was introduced that adjusts the map 

based on the time the ship has traveled from its initial position. This function takes into 

consideration the ice velocity of individual floes, which was assumed to be uniform. To ensure 

a more accurate representation of directional changes, a two-pixel shift was implemented for 

each iteration of movement (see Fig. 2). 

Given the uncertainty beyond the boundary of the initial image (areas not known to us when 

the algorithm will run), any shift of values outside this boundary was considered an obstacle 

and was accordingly adjusted (visible as a yellow straight line around the respective boundary 

based on the directional movement). After a predefined iteration of the A* search, updated the 

map and continued the A* search on the modified map. 

Figure 2. Illustration of the map evolution for three time periods. It shows the predicted 

positions of ice floes as time progresses. 

RESULTS 

The effectiveness of the algorithm depends on both the type of map used and the positions of 

the start and goal nodes. Due to the variability in map diversity and start-goal configuration, 

the algorithm’s effectiveness is theoretically grounded rather than reliant on specific input data. 

The input map serves to demonstrate the algorithm’s performance in various scenarios and 

should be viewed as a proof-of-concept. 

Figure 3 compares the optimal paths generated by three approaches: the original A* search, A* 

with traversability cost, and A* with traversability cost plus a dynamic map. At Site 1, A* with 

traversability cost produced a shorter path (69.10 Nm) than the original A* (82.99 Nm), with a 

length ratio of 0.832. The dynamic map further reduced the path to 68.48 Nm (ratio 0.825). 

At Site 2, A* with traversability cost reduced the path from 53.43 Nm to 45.76 Nm (ratio 0.856), 

and the dynamic map further optimized it to 44.98 Nm (ratio 0.842). 

At Site 3, the original A* path was 229.08 Nm; A* with traversability cost reduced it to 94.30 

Nm (a 58.8% reduction), and the dynamic map further shortened it to 81.12 Nm, representing 

a 64.6% reduction compared to the original A* and a 13.97% reduction compared to A* with 

traversability cost. 

Table 1. Comparison of Path Planning Algorithms: Path Length and Efficiency Across Three 

Test Sites (Path length is expressed as 𝑙 =  𝑑(𝑛) ⋅ 𝜏(𝑛), 𝑛 ∈ 𝑃 ) 

Site 

No 

(i) 

Output Path Length in Nm 

A* A* + Traversability 

 

A* + Traversability + 

Dynamic Map 



 Length 

𝑙(𝑖) Nm 

Length 

𝑙𝑡(𝑖) Nm 

Ratio 

𝑙𝑡(𝑖)/𝑙(𝑖) 

Length 

𝑙𝑡𝑑(𝑖) Nm 

Ratio 

𝑙𝑡𝑑(𝑖)/𝑙(𝑖) 

Site 1 82.99 69.10 0.832 68.48 0.825 

Site 2 53.43 45.76 0.856 44.98 0.842 

Site 3 229.08 94.30 0.412 81.12 0.354 

 

 

Figure 3. Comparison of A* path planning algorithms with and without traversability and 

dynamic mapping. The empty circle represents the start position, while the filled circle 

denotes the goal position. 

Our algorithm possesses the following key characteristics: 

1. Optimality: The algorithm ensures path optimality within the modeled constraints by 



employing admissible heuristics and evaluating all traversable paths on the map. This 

optimality is contingent on the defined cost function and environmental assumptions 

(e.g., ice dynamics, ship resistance parameters) used in the study. 

2. Traversability: A key quality of our algorithm is the incorporation of traversability, 

which allows for the identification of additional paths through the ice rather than 

treating ice as non-traversable obstacles. This makes our algorithm more versatile 

compared to traditional path planning methods that rely solely on a non-traversable 

obstacle map.  

3. Adaptability to dynamic environments: The dynamic nature of our map plays a crucial 

role in reducing the risk of collision with non-traversable objects compared to static 

maps. The dynamic map not only enhances safety but also provides a shorter path, 

demonstrating that a dynamic map significantly improves both path efficiency and 

safety (ref. Fig. 3 Site 3) 

These results consistently show that incorporating traversability cost and dynamic mapping 

leads to shorter and more efficient paths across all three sites, with Site 3 exhibiting the most 

dramatic improvement. Incorporating traversability cost always provides shorter paths but may 

not be always collision free due to the absence of dynamic maps, and traversability cost with 

dynamic map always leads to much more safer paths and reduces any occurrence of collision. 

Thus, it is the only algorithm that provides shortest collision free path among the 3 algorithms 

tested. Based on prioritizing safety first and then path length, A* with traversability and 

dynamic map consistently produces the most optimal path, balancing both critical navigation 

requirements. 

CONCLUSIVE REMARKS 

In this proof-of-concept work, we have developed a model that successfully identifies optimal 

paths by integrating critical information on ice size, thickness and flexural strength, enabling a 

comprehensive traversability analysis. The incorporation of a traversability cost function has 

proven to be highly effective, resulting in the generation of shorter and more efficient paths 

compared to the original A* algorithm, which only considered heuristics and motion costs. 

Moreover, the introduction of a dynamic map significantly improves the situational awareness 

in terms of future path predictions while adapting to changes in the ice cover. This dynamic 

model predictive mapping approach not only improves the traditional A* search algorithm but 

also offers enhanced flexibility in response to evolving conditions. Despite these advancements, 

there remain potential avenues for further refinement. One promising direction involves the 

implementation of a Hybrid A* algorithm, which will improve path planning to adhere with 

ship maneuverability and more effectively address dynamic constraints associated with ship 

motion during pathfinding. 

Additionally, the domain of traversability analysis, particularly in relation to in-situ ice 

thickness prediction through sensor data, and ice floe tracking through radar and satellite data 

present substantial opportunities for further research. Continued exploration of this research 

domain will help to refine and enhance the model, making it more robust and accurate in 

generating optimal paths under varying Arctic conditions. 

The implemented ice resistance formulations are semi-empirical and may not be suited for high 

fidelity modelling (e.g. in ice ridge fields). Added resistance due to wind and waves was not 

considered. Following the advancements made in ship performance evaluation in open water 

conditions, there is potential to refine current ice resistance formulations (e.g., a data-driven 

approaches provided a rich history of operating in ice on a well instrumented vessel for ice 

conditions monitoring). 
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