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ABSTRACT  

During the winter months, ice conditions can significantly impact ship performance, posing 

challenges for efficient navigation. Traditionally, deterministic models, such as semi-empirical 

approaches, have been used to estimate ship performance in ice, resulting in non-linear 

dependencies between ship’s speed (v) and ice thickness (h), i.e. so-called h-v curve. However, 

these models often fall short in capturing the inherent variability and uncertainty associated 

with complex ice conditions. Given the complex and unpredictable nature of ice, there is a 

motivation to adopt probabilistic modeling techniques that can account for these uncertainties. 

As a preliminary exploration, this study models ship transit speed in ice using the h-v curve 

guided Gaussian Process Regression (HGP), providing a probabilistic relationship between ice 

conditions and ship speed. The proposed model is applied to independent navigation trips of 

merchant ships, and the outputs include the mean transit speed and the uncertainty of each 

estimation. Mean absolute error and the root mean squared error are used to evaluate the 

effectiveness of this approach. The output of the HGP is compared with that of the standard 

Gaussian Process model and the recorded ship speed, highlighting the need for combining the 

physics-based guidance with the data-driven insights for better supporting ship performance 

analysis in ice. The proposed approach could be further developed e.g., by refining the 

integration of physics-based guidance with data-driven approach, incorporating additional 

variables to represent ship maneuvers, and integrating observed ice data to mitigate inherent 

data uncertainties.  

KEY WORDS: Ice-going ship; Ship performance estimation; Probabilistic model; Ice 

conditions; Winter navigation 

 

INTRODUCTION 

Ship attainable speed in ice-covered waters is influenced by a complex interplay of factors, 

including ice conditions, ship characteristics, and operational strategies. Accurately predicting 

ship speed in varying ice conditions is essential for optimizing navigation efficiency and 

supporting icebreaker assistance planning.  

A considerable number of studies have focused on investigating ship performance (attainable 
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speed) in ice. There are deterministic, probabilistic, and machine learning approaches to predict 

the ship speed in ice. The deterministic approach models ship speed (𝑣) as a function of level 

ice thickness (ℎ), forming an h-v curve. This curve is defined by establishing an equilibrium 

between the ice resistance and propeller net thrust. It relies on the understanding of fundamental 

principles, including ship hull-ice interaction, ice icebreaking process, bending theory, crushing 

procedure, and ice properties (e.g., Lindqvist et al., 1989; Su et al., 2010; Külaots et al., 2013). 

Although the h-v curve is based on simplified assumptions about ice resistance and ship-ice 

interaction, it remains a widely used method due to its foundation in physical principles and its 

ability to theoretically explain how ship speed varies with ice thickness. Kulkarni et al. (2024) 

derived h-v curves for candidate ships by systematically matching them with reference ships 

that had known h-v curves to simulate the traffic in the Baltic Sea. The findings indicate that 

while the h-v curve effectively captures the general performance trends, its accuracy varies 

from case to case, highlighting the need for improvement in the approach used to represent ship 

speed in ice.  

There has been emerging interest in probabilistic approaches and machine learning models for 

predicting ship speed under different ice conditions. These approaches can learn from recorded 

ship performance data, capturing complex patterns that may not be explicitly accounted for in 

physics-based models (e.g., Montewka et al., 2015; Li et al., 2017; Rao et a., 2021; Tarovik et 

al., 2024). Machine learning models primarily provide the predicted deterministic speed by 

assessing the input factors, while probabilistic models can provide the probability of a certain 

speed under given ice conditions, accounting for uncertainties across different ice conditions. 

However, data-driven approaches are highly dependent on data availability and may lack 

physical consistency, particularly in data-sparse regions (Shen et al., 2019). Montewka et al. 

(2019) proposed a hybrid model consisting of semi-empirical model and data-driven model to 

predict the ship besetment probability. Two sub models are established and used in parallel to 

compensate each other, covering a wider range of ice conditions and operational scenarios. 

While this parallel approach leverages the strengths of both models, an alternative is to 

integrate physics-based constraints directly within a data-driven approach to enhance 

predictive consistency. This study serves as a preliminary exploration of such an integration 

for ship speed prediction, capturing its distribution and uncertainties across different ice 

conditions.  

This study adopts a h-v curve guided Gaussian Process Regression, abbreviated as HGP, to 

model the ship speed across different ice conditions. The h-v curve is derived from the 

systematic ship performance modelling approach, which is proposed in our previous study 

(Kulkarni et al., 2024). While it offers the prior knowledge of ship performance in ice, real-

world speed measurements often deviate from the predicted h-v relationship due to unmodeled 

effects, such as ice property variations and complex ship-ice interactions. To account for the 

variations, HGP is applied to the residuals, which represent the differences between observed 

ship speed and the predictions from the h-v curve. Afterwards, the final prediction is the 

combination of the residuals predicted by HGP and the derived speed from h-v curve. As a 

preliminary study, the findings can provide insights into the potential of hybrid modeling for 

ship performance prediction in ice. Future improvements could focus on refining the 

integration of physics-based guidance with data-driven approach, incorporating additional 

variables to better capture ship maneuvers, and leveraging observed ice data to reduce inherent 

uncertainties.  

METHODOLOGY 

This study aims to adopt a GP model guided by h-v curve (HGP) to model the ship speed under 
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varying ice conditions. The methodology consists of two stages: (1) establishing a semi-

empirical ship performance model (h-v curve) to provide a baseline speed estimate and quantify 

speed residuals, which are the differences between recorded ship speeds and the model 

estimates, and (2) training the HGP to learn the residual variations and improve speed 

predictions. The output of the HGP will be compared against the recorded speeds and a standard 

GP model output, offering insights into the effectiveness of integrating physical constraints into 

data-driven models for ship speed prediction in ice-covered waters. 

Semi-empirical ship performance model  

To establish a physics-based baseline for ship speed prediction, this study adopts the method 

proposed by Kulkarni (2024) for deriving the h-v curve. The curve accounts for the effects of 

equivalent ice thickness in determining ship performance. Only the relevant information is 

presented in this study. The detailed information about the method can be found in Kulkarni 

(2024).  

Deriving the h-v curve for candidate ships in ice is challenging due to the unavailability of hull 

angles for ice resistance estimation and the lack of information on actual power usage, which 

affects attainable speed. To address this, a systematic similarity-matching approach is used, 

where the speed performance of a candidate ship is estimated by comparing it with a database 

of reference ships (Kulkarni et al., 2024). This database consists of ships with known h-v curves 

obtained through theoretical calculations, model-scale experiments, or full-scale measurements. 

The matching process considers key ship characteristics that influence ice resistance and 

propulsion performance, including ice class, ship type, power to deadweight ratio, and 

attainable open water speed. These parameters help identify ships with comparable operational 

behavior in ice-covered waters. By identifying a reference ship with similar characteristics, the 

corresponding h-v curve is matched to the candidate ship, assuming full power operation.  

The h-v curve represents the ship’s ability to break through level ice. However, the real-world 

ice conditions are far more complex. Ice fields vary in concentration and floe size, with some 

areas containing ice ridges during the deformation process. The ice can also be deformed under 

pressure, forming ridges. Equivalent ice thickness is a convenient way to represent complex 

ice fields into a single level-ice thickness. The equivalent ice thickness is computed as shown 

in Eq. (1) according to Kulkarni et al. (2024). 

ℎ𝑒𝑞 = 𝑐(ℎ𝑙𝑒𝑣𝑒𝑙 + 0.082ℎ𝑠𝑎𝑖𝑙
2 )(1 − exp⁡(−

𝑑

100
)) (1) 

Where c denotes ice concentration. ℎ𝑙𝑒𝑣𝑒𝑙  represents the level ice thickness, and ℎ𝑠𝑎𝑖𝑙 

represents the sail height. 𝑑 denotes the ice floe diameter in meters. (1 − exp (−
𝑑

100
)) presents a 

correction coefficient as a function of ice floe size to be included in the equivalent ice concept.  

The magnitudes of the coefficient are tabulated in Table 1. When the floe size equals 500m, the 

coefficient reaches 0.993, while the resistance is almost the same as the level ice (Kulkarni et 

al., 2024).  

Once the h-v curve is matched and the equivalent ice thickness is computed, the ship speed 

prediction follows Eq (2): 

𝑣ℎ = 𝑓(ℎ𝑒𝑞, 𝜃) (2) 
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Where 𝑣ℎ  represents ship speed calculated based on the matched h-v curve. 𝜃  represents 

parameters (e.g., empirical coefficients) in the matched h-v curve. This serves as the baseline 

speed for the HGP development. 

Table 1. The coefficient tabulated as a function of 𝑑 

𝑑(𝑚) 1 − exp⁡(−
𝑑

100
) 

5 0.049 

15 0.139 

35 0295 

75 0.528 

150 0.777 

300 0.950 

500 0.993 

Gaussian process regression guided by h-v curve(HGP) 

To refine the baseline ship speed prediction obtained from the h-v curve, GP regression is 

applied to learn and model the residuals between the recorded speeds and the baseline estimates. 

The residuals are defined as Eq (3). 

𝑣𝑔𝑝 = 𝑣𝑟𝑒 − 𝑣ℎ (3) 

Where 𝑣𝑟𝑒 represents the recorded ship speeds, and 𝑣ℎ is the baseline speed derived from the 

matched h-v curve. By modeling the residuals, the HGP aims to capture additional variations 

in ship speed. 

The residuals are modeled using the GP regression, where the relationship between the 

equivalent ice thickness and speed residuals is learned through a non-parametric probabilistic 

model. The GP is defined as Eq (4): 

𝑣𝑔𝑝~𝐺𝑃(𝑚(𝑋), 𝑘(𝑋, 𝑋
′)) (4) 

where 𝑚(𝑋) is the mean function, 𝑋  and 𝑋′  represent two different input points from the 

dataset. 𝑘(𝑋, 𝑋′)  is the kernel function. The GP model employs rational quadratic kernel 

combined with a white noise kernel to define the covariance structure and balance flexibility 

with robustness. Thus, 𝑘(𝑋, 𝑋′) can be written as Eq (5).  

𝑘(𝑋, 𝑋′) = (1 +
𝑋 − 𝑋′

2𝛼𝑙2
)−𝛼 +⁡𝜎2𝛿(𝑋, 𝑋′) (5) 

Where the first term represents the rational quadratic kernel, allowing variations in smoothness 

across different scales. The parameter 𝑙 determines how far points influence each other, while 

𝛼 controls the weighting of large-scale variations. In the second term, 𝜎2 represents the noise 

variance, and 𝛿(𝑋, 𝑋′) ensures independent noise for different observations. The values of 

these parameters are set based on characteristics of the dataset to provide a reasonable starting 

point for the fitting process.  

The GP model is trained on the speed residuals using standardized inputs and outputs. 

Standardization ensures numerical stability and improves fitting efficiency. The model learns 

the residual patterns based on ice conditions and refines the baseline speed predictions. The 

final HGP output (𝑣𝑓𝑖𝑛𝑎𝑙) is obtained by combining the learned residuals with the baseline 

speed, as expressed in Eq. (6). 

𝑣̂𝑓𝑖𝑛𝑎𝑙 = 𝑣ℎ +⁡𝑣̂𝑔𝑝 (6) 
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Where 𝑣̂𝑔𝑝 is the predicted residual. The final output 𝑣𝑓𝑖𝑛𝑎𝑙 provides a distribution of possible 

speeds for given ice conditions and corresponding uncertainty ranges.  

The performance of the HGP is evaluated using mean absolute error (MAE) and the root mean 

squared error (RMSE) metrics to assess speed estimation performance, as defined in Eqs. (7)-

(8), where 𝑁  represents the total number of observations. Finally, the speed distributions 

generated by the HGP will be compared against recorded ship speeds and those generated by 

the standard GP (which operates without h-v curve guidance), offering insights into the impact 

of integrating physical constraints into data-driven predictions. 

𝑀𝐴𝐸 = ⁡
1

𝑁
∑|𝑣𝑟𝑒 − 𝑣̂𝑓𝑖𝑛𝑎𝑙|

𝑁

𝑖=1

 
 

(7) 

𝑀𝐴𝐸 = ⁡√
1

𝑁
∑(𝑣𝑟𝑒 − 𝑣̂𝑓𝑖𝑛𝑎𝑙)

2

𝑁

𝑖=1

⁡ 

 

(8) 

DATA SOURCES 

There are three primary data sources to represent the ship performance in ice, including traffic 

data, ice data, and ship information. The first source, traffic data, is derived from Automatic 

Identification System (AIS) data provided by the Finnish Transport Infrastructure Agency. It 

is used to present traffic scenarios, including geographical locations and recorded ship speed. 

The second data source comes from the Helsinki Multi-category sea-ice model (HELMI), 

including thickness and concentration of level ice, ridged ice, and rafted ice. The ridged ice 

thickness is assumed to represent the total thickness, including both the sail and keel. The keel-

to-sail ratio is assumed to be 4.85 (Kuuliala et al., 2017; Strub-Klein & Sudom, 2012). 

Therefore, the sail height is calculated by dividing the ridged ice thickness by 5.85.  According 

to Lensu et al. (2013), the HELMI model has been validated against observational data in many 

projects for a decade, demonstrating its effectiveness for its intended applications. The third 

data source is IBNet, a system jointly managed by the FTIA and the Swedish Maritime 

Administration to coordinate icebreaking operations (BIM, 2020). This system provides ship 

information, including ice class, ship type, deadweight, breadth, power, and open water speed. 

The candidate ships used in this study are general cargo, with their specifications detailed in 

Table 2. The analysis includes four trips conducted in February 2018, as shown in Table 2. The 

corresponding figure visually represents these trips, with a color bar indicating recorded ship 

speeds, where yellow indicates higher speeds and blue indicates lower speeds.  

Table 2. Ship information and sample trajectories 
 Candidate ships 

 

 Ship I Ship II ship III 

Ship type 
General 

cargo 

General 

cargo 

General 

cargo 

Ice class IA IA IA 

DWT (ton) 6000 8664 6053 

Length (m) 110.78 132.20 113.76 

Breath (m) 14.00 15.87 14.40 

Power (kw) 2640 3960 3000 

Open water 

speed (knot) 
13 14 13 
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Assessing the ship speed in ice-covered waters requires integrating ice data with dynamic ship 

traffic information. HELMI stores data in a three-dimensional NetCDF format, with variables 

organized on a fixed grid at a resolution of 1 nautical mile by 1 nautical mile, updated hourly 

(Haapala et al., 2005). In contrast, AIS data is updated at intervals ranging from a few seconds 

to six minutes (Liu at al., 2022). To integrate ice data with dynamic traffic data, we assign ice 

conditions to each point along a ship’s route based on the nearest temporal and spatial data 

points. The detailed information about the integration method can be found in Liu et al, (2024). 

This approach ensures a location accuracy of approximately one grid cell or better (Lensu and 

Goerlandt, 2019).  

Figure 1 illustrates the recorded ship speed and corresponding equivalent ice thickness over 

time for four trips. Ship speed is represented in blue on the left y-axis, while equivalent ice 

thickness is shown in red on the right y-axis. The data reveals that the speed fluctuations align 

with changes in ice conditions, with notable speed reductions as ice thickness increases.  In the 

first two trips, more significant variations in speed and ice conditions are observed, whereas 

the latter two trips feature relatively stable speeds and thinner ice. The following analysis is 

conducted based on this presented dataset.  

 

Figure 1. Speed and different ice thickness distributions 

There are 3692 data points in the dataset. Since low-speed records may correspond to docking, 

waiting, or maneuvering near port rather than actual ice navigation, data points with recorded 

speeds lower than 0.1 knots are removed to ensure the analysis focuses on ship performance in 

ice-covered waters. After the filtering step, 3676 data points remain for further analysis. Given 

the variability in recorded ice thickness and speed, the data is subsequently binned based on 

equivalent ice thickness using a bin size of 0.005 m to reduce noise and facilitate model training. 

Within each bin, the mean and standard deviation of ship speed are calculated, providing a 

structured representation of speed variations under different ice conditions while retaining key 

statistical characteristics of the dataset.  

 

RESULTS AND DISCUSSIONS 

Speed distribution based on HGP  

According to the methodology section, the h-v curve for candidate ships is derived by matching 
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their characteristics with a reference ship for which h-v curves are available. Given that the 

candidate ships exhibit similar attributes in terms of ice class, ship type, power to deadweight 

ratio, and attainable open-water speed (see Table 2), they are assigned the same h-v curve. The 

obtained h-v curve is obtained under the assumption that ships operate at full power. Any 

changes in power usage would alter the h-v curve, affecting the predicted ship performance. 

However, the impact of power variations on ship speed in ice is beyond the scope of this study 

and is reserved for future work. 

Figure 2 shows the recorded ship speeds across four trips, compared against the speeds 

estimated using the h-v curve. Each subplot corresponds to an individual trip, with recorded 

speeds represented by scattered markers and h-v curve predictions shown as dashed lines. The 

results indicate a general trend of decreasing speed with increasing ice thickness, as expected. 

However, deviations between the recorded speeds and the h-v curve predictions are observed, 

particularly in trips 1 and 2, where the recorded speeds exhibit greater variability. The matched 

h-v curve simplifies real-world conditions and does not fully capture complexities like ice 

properties and ship-ice interactions. Additionally, the ice data is obtained from a forecasting 

model rather than direct observations, introducing inherent uncertainties. As a result, 

reasonable deviations between the recorded speed and the h-v derived speed are expected. In 

the following section, we incorporate the h-v curve as a constraint in a data-driven approach to 

evaluate whether integrating physics-based constraints can improve the speed estimation under 

varying ice conditions. Specifically, the speed derived from the matched h-v curve serves as a 

baseline in the HGP, where the model is trained to learn the residuals between the recorded 

speed and the h-v derived speed. This approach allows the HGP to capture deviations which 

are not explicitly considered in the h-v curve, while retaining the underlying physical 

relationship between speed and ice thickness 

 

Figure 2. Speed derived from the matched h-v curve  

Figure 3 presents the predicted ship speed using the HGP under varying ice conditions based 

on the full dataset. The recorded speed data is depicted as red dots, while the blue line represents 

the HGP predictions, with the shaded region indicating the 95% confidence interval. The model 

achieves a reasonable fit with an MAE of 0.921 knots and an RMSE of 1.426 knots. The HGP 

effectively captures the overall trend of decreasing speed with increasing ice thickness, 

demonstrating a close alignment with the recorded speed. The confidence interval remains 

relatively narrow across most regions, suggesting reasonable predictive reliability. However, 
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despite the physics-based guidance, in regions with sparse data, such as ice thickness beyond 

0.3 m, the model exhibits higher uncertainty, reflected in the widened confidence band. Notably, 

the predicted speed shows an increase when ice thickens from 0.2 m to 0.3 m, which deviates 

from the expected trend. This anomaly is further discussed in the following comparative 

analysis. 

 

Figure 3. Speed prediction based on HGP based on the full dataset 

Comparative results 

This section presents the comparative results of the HGP, standard GP, and the recorded speeds. 

Figure 4 provides an overall comparison of the recorded speeds, HGP, standard GP, and h-v 

curve across available test data, while Figure 5 further breaks down the predictions for 

individual trips. This preliminary analysis aims to assess the predictive performance of each 

approach and identify their respective strengths and limitations in different ice conditions.  

As shown in Figure 4, the HGP demonstrates improved predictive accuracy compared to both 

the standard GP and the h-v curve, achieving the lowest prediction errors (MAE: 0.92 knots, 

RMSE: 1.43 knots). The h-v curve, derived from semi-empirical equations, serves as a physics-

based reference for ship speed under varying ice conditions. However, errors from h-v curve 

arise from simplified assumptions, such as simplified ship-ice interactions and the omission of 

ship maneuvering and propulsion variations. The standard GP, on the other hand, is purely data-

driven and performs reasonably well where recorded data is dense. However, in regions with 

sparse data, it struggles to generalize effectively, leading to higher uncertainty, as indicated by 

the widening light blue confidence interval. When ice thickens from 0.3m to 0.35m, it falls 

short in capturing a decreasing trend of the speed. This highlights the challenge of relying solely 

on data-driven models in regions with limited observations, highlighting the advantage of 

incorporating physics-based constraints as in the HGP. The uncertainty range is notably 

narrower for the HGP compared to the standard GP, particularly in thicker ice conditions. By 

incorporating the h-v curve as a guiding constraint, the HGP exhibits improved alignment with 

recorded speeds, especially when the ice thickness approaches 0.35 m.  

It is noticeable that both the HGP and standard GP predict an increase in speed when the ice 

thickness approaches 0.3 m, which deviates significantly from the speed predicted by the h-v 

curve. This discrepancy arises from the characteristics of the recorded data and the limitations 

of the available ice information. In practice, merchant ships can maintain relatively high speeds 

when navigating through open ice channels compared to level ice conditions. However, the ice 

data used in this study, derived from the HELMI model, does not explicitly account for the 

presence of existing ice channels or brash ice. As a result, the data-driven models learn 
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correlations based only on the available input variables. This indicates a fundamental challenge 

for data-driven models, which are inherently constrained by the quality and comprehensiveness 

of their training data. To improve predictive accuracy, future research should focus on enhanced 

data acquisition, incorporating additional ice parameters such as brash ice and navigable ice 

channels to better represent real-world navigation conditions.  

 

Figure 4. Comparison of recorded and predicted ship speeds based on the full dataset 

Figure 5 further presents the predictions results of different approaches across individual trips. 

The HGP constantly demonstrate good alignment with recorded speeds. The results indicate 

that the effectiveness of each approach varies depending on ice thickness and data availability. 

In lighter ice conditions (trips 3 and 4), the standard GP achieves the lowest MAE and RMSE, 

as the recorded data is dense enough for the model to capture the underlying patterns effectively. 

However, as the ice thickens (trips 1 and 2), the HGP outperforms the standard GP, benefiting 

from the h-v curve guidance, which helps reduce uncertainty and improve prediction accuracy 

where data is sparse. The h-v curve alone shows the largest deviation from the recorded speed 

across all trips, reflecting the limitations of its simplified assumptions and the underlying 

uncertainties from the available dataset.  

These results illustrate the strengths and limitations of different modeling approaches under 

varying ice conditions. While purely data-driven models rely on sufficient and diverse training 

data, physics-based constraints offer valuable guidance but can be limited by simplifications. 

The HGP leverages physics-based constraints to provide more stable predictions, particularly 

in thicker ice conditions where data is sparse. However, the effectiveness of the HGP model 

still depends on the accuracy of the guiding physics-based model, and discrepancies may arise 

if real-world conditions deviate from its assumptions. Further refinement of the constraints and 

the incorporation of additional physical variables could enhance the hybrid models, allowing 

them to better capture the varying ship performance in complex operational conditions.   
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Figure 5. The comparison between the recorded and predicted speed for each trip 

CONCLUSIONS AND FUTURE WORK 

This study adopted the HGP to predict the ship speed under different ice conditions. The 

preliminary results indicate the incorporation of physical constraints can provide an 

opportunity to improve the representation of ship performance trends in ice. Nonetheless, the 

results remain subject to uncertainties, particularly due to the limited availability of the 

recorded data, forecasting-based ice data, and the assumptions of the physical constraints used. 

Future work needs to prioritize data acquisition to enhance the dataset comprehensiveness. 

Additionally, further research can explore refining the integration of physical constraints with 

data-driven models and adjusting these constraints using real-world data to improve the 

representation of ship performance in complex operational conditions. 
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