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ABSTRACT  

Ice-induced vibrations present critical challenges for offshore structures in ice-covered regions. 

According to observations, continuous brittle crushing (CBR) is the most prevalent failure 

mode during dynamic ice crushing in sea ice-structure interactions. As stipulated in ISO 19906, 

CBR ice loads can be represented through a prescribed load spectrum. However, this spectral 

approach neglects critical aspects of the load’s temporal characteristics and its underlying 

physical interpretation. Moreover, it limits the ability to comprehensively evaluate the 

adequacy of the resulting loading scenarios. To better characterize the time-domain behavior 

of CBR ice loads, this study introduces a fractal-based analytical framework. First, the time-

varying mean component of the CBR ice load is removed using wavelet packet transform. 

Second, wavelet packet decomposition was used to extract the fluctuation component of ice 

load within the target frequency range based on db4 wavelet basis. Then, the time-domain 

characteristics of the ice load fluctuation in this frequency range are then characterized using 

the Weierstrass-Mandelbrot function. Finally, the power spectral density spectrum and other 

statistical parameters of the generated load are compared with those of the original load.The 

research results show that this method can effectively characterize the time history curve of 

CBR ice load within a specific frequency range and reflect its time domain characteristics. 

KEY WORDS: Ice load; Ice-induced vibration; Ice-structure interaction; Continuous brittle 

crushing 

 

1 INTRODUCTION 

Offshore structures operating in ice-covered waters face persistent challenges from ice-induced 

vibrations (IIV). The crushing of ice against structures generates complex loads that vary with 

structural motion, often triggering non-linear responses. Historical incidents from Cook Inlet  

(Blenkarn, 1970) and Bohai Bay (Yue and Bi, 2000) have demonstrated how these dynamic ice 

loads create critical conditions for multi-leg jacket structures, affecting both ultimate strength 

and fatigue performance (Gold and Williams, 1966; Määttänen, 1975).In addition to early 

observations of wide structures, slender installations like lighthouses and channel markers in 

the Baltic Sea have also experienced notable vibration issues (Engelbrektson, 1977). Field 
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measurements, particularly the extensive dataset from the Norströmsgrund lighthouse, capture 

these interactions across varying ice conditions (Jakobsen, et al., 2001; Nord, et al., 2018; 

Schwarz, 2001). Analyses by Bjerkås (Bjerkås, 2006; Bjerkås, et al., 2007) revealed complex 

time-frequency patterns in the load signals, highlighting how localized crushing events initiate 

structural oscillations. 

Such field evidence has shaped current engineering guidelines. ISO 19906 (ISO, 2019) defines 

three regimes of IIV: intermittent crushing, frequency lock-in (FLI) and continuous brittle 

crushing. Among these, continuous brittle crushing (CBR), is the most prevalent form of ice-

induced vibration, it is particularly critical due to its significant contribution to structural 

fatigue and potential failure (Duan and Gao, 1999; Yue and Bi, 2000). 

The ice load have usually been analyzed separately in the time and frequency domains. In ISO 

19906, Kärnä and Qu (Kärnä, et al., 2004) followed up the idea of ice loads as stationary 

random processes and proposed a new spectral method based on measurements from the 

Norströmsgrund lighthouse which was recommended for IIV analysis of structures. 

However, these approaches typically rely on the idealized assumption that CBR ice loads are 

stationary and follow a Gaussian distribution (Kärnä, et al., 2004). Field data, however, 

consistently contradicts this, revealing prominent non-stationary and non-Gaussian 

characteristics; for instance, research by Qu (Qu, 2006) has shown that CBR ice loads are not 

always Gaussian, and are often better described by an Gamma distribution. These discrepancies 

can lead to significant inaccuracies when modeling real ice load behavior. 

To address these limitations, this study proposes a new modeling framework based on fractal 

theory. By recognizing the inherent fractal patterns in CBR ice loads, we apply wavelet packet 

decomposition to separate fluctuation components from time-varying components in the load 

signals. The Weierstrass-Mandelbrot function (Berry, et al., 1980) then characterizes these 

fluctuations' self-similar nature across different scales. Through comparisons with field 

measurements, this approach demonstrates its potential for improved accuracy in capturing 

both non-stationary behavior and non-Gaussian features of actual ice-structure interactions. 

2 METHODS 

2.1 Wavelet Packet Decomposition 

Wavelet packet decomposition extends traditional wavelet analysis by providing enhanced 

frequency resolution. Unlike standard wavelet transforms that only split low frequencies, this 

method decomposes both low and high frequency bands at each level. The decomposition uses 

paired filters  and , generating coefficients through: 

  (1) 

  (2) 

This process repeats until reaching the target level. The resulting tree structure captures local 

time-frequency features particularly relevant for ice load analysis. The implementation in 

MATLAB utilizes the wpdec function from the Wavelet Toolbox, where the decomposition 

level and wavelet basis are predefined. In this study, the db10 wavelet basis is used to extracted 

the trend, also known as the time-varying mean components below 0.16 Hz. Then, the 



components ranging from 0.16 to 8 Hz are extracted from the reconstructed components above 

0.16 Hz and are referred to as the fluctuation components. 

 
Figure 1. Comparison of the extracted fluctuation component and the time-varying mean 

component 

2.2 Fractal Analysis 

2.1.1 Fractal characteristics of continuous brittle crushing ice loads 

Previous studies have identified fractal behavior in ice crushing processes. For example, 

Palmer and Sanderson (Palmer and Sanderson, 1991), Bhat (Bhat, 1990), and Xu (Xu, 2005) 

observed scale-invariant features in the mechanical fragmentation of ice during crushing 

events. However, these investigations primarily focused on the fractal nature of the crushing 

process itself, rather than the resulting ice force time histories. Field measurements of 

continuous brittle crushing (CBR) ice loads from Norströmsgrund lighthouse (March 3, 2000) 

show typical fractal characteristics. Qu (Qu, 2006) reported that the time history of CBR ice 

force demonstrates self-similarity: fluctuations observed over shorter intervals ( ) resemble 

those over longer durations ( ). Magnify the local area of ice load, we will find that it is closer 

to the overall form. This means that the CBR ice load exhibits the fractal characteristics 

commonly discussed in mathematics. 



 

Figure 2. Field measurements of CBR ice load from Norströmsgrund lighthouse (March 3, 

2000) 

2.1.2 Weierstrass-Mandelbrot function 

A common application of fractal theory is in the simulation of rough surfaces, including the 

fractured surface of rock and and corroded steel structures (Barabási and Stanley, 1995). In this 

study, the analysis of CBR ice load signals—revealed geometric patterns similar to those 

produced by the Weierstrass–Mandelbrot (W–M) function. This function is widely used to 

describe self-affine and scale-invariant features. In this study adopts the stochastic W–M 

function to simulate the fluctuating component of the ice load. 

   (3) 

Formula (3) shows the original form of the W-M function. 

  (4) 

Formula (4) shows the stochastic W–M function, and in this study,  takes a finite value and 

is calculated as follows: 

  (5) 

range in this study is 0.16 to 8.00, and the unit is HZ. The fractal roughness parameter  is 

suggested to be 1.08 in order to provide dense spectral information.(Berry, et al., 1980). D is 

the fractal dimension ranging from 1 to 2, calculated by the structure function method in this 

study. φ is a random phase uniformly distributed on [0,2π]. 

In a finite range of  values, the W-M function consists of a finite number of discrete points, 

and its power spectrum density is also discrete in a finite frequency range. To obtain a 

continuous spectrum, the discrete power spectrum needs to be averaged. The power spectral 

density of the continuous W-M function can be approximately expressed as follows: 



  (6) 

where  is the amplitude coefficient, which can be obtained by calculation. 

3 ANALYSIS AND RESULTS 

3.1 Continuous Brittle Crushing Ice Load Analysis 

The ice load data used in this study were collected at the Norströmsgrund lighthouse on March 

3, 2000. Details regarding the load panel parameters, including the load panel geometry and 

inclination angles, can be found in the documentation of the LOLEIF project and related 

researches (Jochmann and Schwarz, 2000). In this analysis, data recorded between 17:56 and 

20:34 were selected, during which nine distinct loading events were identified. Each event 

includes measurements from nine individual channels of load channels. 

To enable comparison with the spectral method recommended in ISO 19906, the analysis 

adopts a fixed data length of 2048 points per segment. This choice is consistent with the 

segment length used by Kärnä et al (Kärnä, et al., 2004). in their earlier studies on CBR ice 

load modeling. The data processing was carried out in the following steps: 

⚫ Segmentation of Ice Load Time Series 

The recorded ice load signals were divided into fixed-length segments, each containing 2048 

data points. Segments shorter than this threshold were exclude. 

⚫ Stationarity Testing 

The segmented time series were subjected to two complementary statistical tests to assess their 

stationarity properties: the Augmented Dickey-Fuller (ADF) test and the Kwiatkowski –

Phillips–Schmidt–Shin (KPSS) test. Count how many data pass each inspection method 

⚫ Wavelet Packet Decomposition (WPD) 

Non-stationary segments were processed using wavelet packet decomposition. The initial 

decomposition employed the Daubechies 10 (db10) wavelet basis to extract low-frequency 

components below 0.16 Hz which are also interpreted as trend or time-varying mean 

component. The remaining reconstructed signal component was then further decomposed using 

the Daubechies 4 (db4) wavelet basis to extract the fluctuation components between 0.16 Hz 

and 8.0 Hz, which is the frequency range of interest in analyzing. 

⚫ Fractal Dimension via Structure Function 

The extracted fluctuation components were analyzed using the structure function method to 

estimate their fractal dimension 𝐷.  

⚫ Spectral Characterization and Fractal Scaling 

A log – log plot of the power spectral density (PSD) of the fluctuation component was 

constructed. The linear portion of the PSD in the log–log domain was fitted by using the 

estimated fractal dimension to determine its slope. This slope was based on the theoretical 

relationship between spectral exponent and fractal geometry (This method is also called power 

spectral density method) as below: 



  (7) 

is the PSD fitted slope. 

⚫ Amplitude Calibration of W–M Function 

To simulate the ice load fluctuation using the Weierstrass–Mandelbrot (W–M) function, an 

amplitude scaling factor 𝐴 was determined. This was done by minimizing the mean square 

error (MSE) between the theoretical PSD of the extracted fluctuation and that of the W–M 

function over the target frequency range in log–log coordinates. 

⚫ Generation of Fractal Load Component 

Using the derived parameters—including amplitude 𝐴, frequency scaling factor 𝛾, and fractal 

dimension 𝐷 , synthetic fluctuation time series was generated via the stochastic W–M function. 

The generated signal was then mean-adjusted to remove residual offset and ensure zero-mean 

conditions for further analysis. 

⚫ Time and Frequency Domain Comparison 

The original and simulated fluctuation components were compared in both time and frequency 

domains. Statistical measurements such as mean, maximum, minimum, and variance were 

computed for both signals. In addition, PSD plots were used to validate the fidelity of spectral 

characteristics between the measured and simulated data. 

3.2 Analysis Results 

This study mainly processes and simulates 9 events measured on the Norströmsgrund 

lighthouse and each measurement covers 9 channels. After segmentation, 261 segments were 

obtained, with 2048 data points. All 2048-point data segments extracted from the nine loading 

events were subjected to stationarity testing using both the ADF test and the KPSS test. Both 

tests were conducted at a significance level of 0.05. The results indicate that only 121 segments 

passed the ADF test, while none of the segments satisfied the stationarity criterion under the 

KPSS test. This discrepancy suggests that a substantial portion of the data exhibits non-

stationary behavior. This result challenges the assumption of stationarity often adopted in 

earlier studies. 

The fractal dimension 𝐷 of each segment was estimated using the structure function method. 

The statistical distribution of the resulting fractal dimensions reveals a minimum value of 1.34 

and a maximum of 1.71, with a mean value of approximately 1.51. This average aligns closely 

with the value reported by Qu (Qu, 2006). 



 

 

Figure 3. Fractal dimension distribution of extracted fluctuation components 

By comparing and analyzing the fluctuation component generated based on the W-M function 

with the actual extracted fluctuation component, it is found that the time domain curve shapes 

of the two are highly similar. It can be found that the variance and maximum value of the 

generated fluctuation term are larger than those of the extracted fluctuation term in Figure 5. 

 

Figure 4. Comparison of the fluctuation component extracted from the measured data with 

the fluctuation component generated by the W-M function  



 

 

Figure 5. Statistical comparison of generated ice load fluctuation components and extracted 

ice load fluctuation components: a) variance; b) maximum value 
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Figure 6. Comparison of the PSD spectrum of the fluctuation component extracted from the 

measurement data and the fluctuation component generated by the W-M function and the 

double logarithmic PSD spectrum.  

To evaluate the spectral characteristics of the extracted ice load fluctuations and assess the 

performance of different modeling strategies, four power spectral density (PSD) curves were 

generated and compared in both linear coordinates and log–log scale plot.The blue curve 

represents the PSD of the extracted fluctuation component, calculated using the Welch method. 

This provides a smoothed estimate of the spectral content over the frequency range of interest. 

A black straight line fitted to this curve in the log–log domain captures its scaling behavior and 

allows for estimation of the spectral exponent, which is theoretically related to the signal’s 

fractal dimension. 

The magenta dashed line corresponds to the spectral model recommended in ISO 19906, which 

was originally derived by Qu (Qu, 2006). through regression analysis of detrended segments 

of the LOLEIF project data. The fitting parameters and functional form of this spectral model 

are consistent with those reported in their study. 

The red curve represents the theoretical PSD of a continuous W–M function, derived from its 

analytical formulation in the frequency domain under specified fractal parameters. In contrast, 

the green curve corresponds to the PSD of a numerically generated W–M signal, where the 

function is truncated to a finite number of terms 𝑛.As a result of this truncation, the PSD is no 
longer continuous but exhibits a discrete spectrum. This discrete PSD was estimated using the 

autoregressive (AR) method, which provides a smooth approximation to the underlying 

spectral structure despite the finite resolution caused by the limited number of harmonics. 

Comparative analysis reveals that both the theoretical and estimated PSDs of the W–M 

generated signal are consistently higher than those of the extracted fluctuation component, 

particularly in the low-frequency region (approaching 0 Hz). This discrepancy diminishes with 

increasing frequency, where the PSD values of the W–M model and the extracted signal tend 

to converge. The overestimation of low-frequency energy in the W–M-based simulation likely 

contributes to the observed differences in time-domain statistics. . For example, the maximum 

values of the simulated signal are higher, and its variance is greater, than those of the extracted 



component. 

This behavior suggests that, while the W–M function is effective in reproducing the scaling 

characteristics of the fluctuation, it may amplify low-frequency components more than 

observed in the measured data. The following section will further examine the underlying cause 

of this spectral bias and its impact on time-domain characteristics. 

4 DISCUSSION 

4.1 On the Selection of Frequency Range 

An essential consideration in generating the fluctuation component of CBR ice loads is the 

definition of the frequency interval. This interval which is close to the power law decay range 

reflects a scale-invariant energy transfer process, analogous to the inertial subrange in 

turbulence theory. In turbulent flows, the inertial subrange refers to the frequency band where 

energy cascades from larger to smaller eddies without significant energy loss due to viscosity. 

Similarly, in the case of sea ice, this frequency range characterizes the regime in which load 

fluctuations follow power-law decay. This indicates energy transfer and dissipation as the ice 

transforms from larger to smaller sizes. 

However, unlike fluids such as wind or waves, sea ice is a heterogeneous material with complex 

failure mechanisms that cannot be accurately represented by a linear superposition of harmonic 

functions. As a result, the boundaries of the power-law decay region cannot be derived purely 

from theoretical assumptions. Instead, a combined approach grounded in both physical 

reasoning and empirical observation is required. 

In this study, an initial frequency range of 0.16 to 8.00 Hz was proposed based on spectral 

observation across multiple events. While this interval captures the dominant fluctuation band 

in most cases, fitting results revealed significant variability across different events and even 

across different load panels within the same event. This variability introduces uncertainty in 

the subsequent spectral fitting and raises the need for more rigorous criteria, either theoretical 

or engineering-based to define this frequency range more precisely in future applications. 

4.2 On the Discreteness of the W–M Function Spectrum 

Another critical issue arises from the inherent structure of the Weierstrass–Mandelbrot (W–M) 

function. Although its theoretical formulation suggests a continuous power spectral density 

(PSD) under ideal conditions, this continuity is valid only when the frequency scaling 

parameter   approaches 1 and the number of terms   tends toward infinity. In practical 

implementations, however, the W–M function must be truncated to a finite , particularly 

within the limited frequency range relevant to engineering applications. This results in a PSD 

that is intrinsically discrete. 

While the use of the autoregressive (AR) method provides a smoothed approximation of the 

PSD, it cannot fully eliminate the spectral discontinuities caused by finite truncation. In 

contrast, the ISO 19906 recommended spectral model is based on Welch method, which 

estimates the PSD from ensemble averages of measured CBR ice load data. The discrepancy 

between the discrete nature of the W–M function’s PSD and the smoothed PSD derived using 

Welch’s method leads to mismatches during curve fitting in the log–log domain, especially in 

the low-frequency range where spectral energy concentration is most sensitive. 



This mismatch has direct consequences for parameter estimation—particularly for determining 

the amplitude scaling coefficient and the frequency scaling factor . Therefore, more robust 

and physically consistent methods are needed to reconcile the PSD differences between 

measured and simulated signals, which would improve the accuracy of W–M-based models in 

reproducing realistic ice load fluctuations. 

5 CONCLUSIONS  

This study presents a numerical simulation approach for modeling CBR ice loads based on 

fractal theory, with the Weierstrass–Mandelbrot (W–M) function employed to replicate the 

time-domain fluctuation characteristics observed in field measurements. The key parameters 

of the W–M function, including the amplitude coefficient , were determined by minimizing 

the difference between the theoretical PSD of the W–M function and the double-logarithmic 

PSD curve fitted from the extracted fluctuation component. The applicable frequency range for 

the simulation was selected based on the observed power-law decay behavior of ice load 

spectra within a defined band, analogous to the inertial subrange in turbulent processes. 

This modeling framework captures both the self-affine nature and the spectral decay law of 

CBR ice loads. By superimposing the simulated fluctuation component onto the time-varying 

mean signal extracted from real measurements, the reconstructed load series retains the 

essential temporal and spectral characteristics of the original signal. The results demonstrate 

that the proposed method is capable of bridging fractal modeling concepts with empirical 

spectral features, offering a more comprehensive representation of ice loading processes. 

It is evident that the accuracy of the simulation is highly sensitive to the selection of the 

frequency range and the theoretical spectrum used for fitting. Therefore, refining the criteria 

for determining these parameters remains a critical area for improvement.  

The method proposed in this paper integrates the energy decay properties and scale-invariant 

behavior of ice loads, and provides an alternative path for generating CBR ice load .Based on 

the dataset collected at the Norströmsgrund lighthouse, future work should focus on two key 

aspects: (1) analyzing the physical mechanisms driving energy transfer within the identified 

power-law decay range, and (2) investigating the dynamic evolution of load fluctuations in the 

time domain. These efforts will help to further enhance the theoretical foundation for CBR ice 

load simulation and support the refinement of design methodologies aligned with ISO 19906, 

particularly in terms of spectral-based load generation. 
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