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ABSTRACT 

 

An experiment was conducted at the University Centre in Svalbard to study the drift of model 

icebergs in an acrylic wave flume. A model scale of 1:400 was applied on both icebergs and waves. 

Iceberg models of cylindrical shape (floaters) were made from paraffin. The diameters and heights 

of the floaters were smaller 7 cm and 6 cm, respectively. All models had stable buoyancy with 

vertical axis in calm water. A plunger-type wave maker generated periodic waves with a 

frequencies less than 4 Hz in the tank. The video recordings were used to reconstruct the 

movements of the floater’s centers of gravity. The video recordings were processed in Wolfram 

Mathematica software and subjected to pixel analysis. A fiber optic strain sensor (FBG sensor) 

was used to measure the force applied to the floaters by waves. It was found that the mean drift 

speed of floaters is several times higher than the Stokes drift speed at the water surface. The 

amplitude of floaters movement in the vertical direction was similar the wave amplitude. The pitch 

oscillations of the floaters occurred around some constant non-zero pitch, which was absent in 

calm water.  The mean value of the force applied to the floater turned out to be close was found 

close to the wave drift force acting on a fixed floater with a vertical axis of the same diameter as 

in the experiment.  
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1 INTRODUCTION 

 

The effect of surface waves on icebergs and floes is of interest for calculating their drift in wave 

conditions (Smith, 1993; Eik, 2009; Keghouche et al, 2010; Monteban, D., et al., 2020).  Icebergs 

 

POAC’25 

St. John’s, 
Newfoundland and 
Labrador, Canada   

Proceedings of the 28th International Conference on 
Port and Ocean Engineering under Arctic Conditions 

Jul 13-17, 2025 

St. John’s, Newfoundland and Labrador 

Canada 



movements caused by waves affect ice loads on ship and offshore structures (Lever et al, 1991; 

Sayed et al, 2017). Lever et al (1991) noted that wave induced motions become increasingly 

important in predicting ice piece velocity as the size of the ice mass decreases. Field observations 

and numerical simulations have confirmed the influence of waves on the drift of icebergs and floes 

on Spitsbergen Bank (Marchenko et al, 2020; Turnbull and Marchenko, 2022).       

Laboratory studies of wave-induced motion of model icebergs were carried out by Lever et al 

(1988) and Eik et al (2009). Experiments of Lever et al (1988) were conducted in a wave flume of 

58m length and 4.15 m width with water depth of 1.8 m. The baseline scale factor was 1:70. The 

sizes of the iceberg models were in the range of several tens of centimeters. Four infrared light-

emitting diodes were mounted on the models, together with control electronics and small batteries. 

The sequential firings of the LED’s were tracked by two cameras. The resulting displacement 

information was analyzed to reconstruct model surge, heave, sway, pitch, roll, and yaw. Of greatest 

interest were characteristics of surge and heave depending on the shape of icebergs and wave 

properties. Experiments of Eik et al (2009) were carried out in a water tank of 60 m length and 5 

m width with water depth of about 1 m. A model scale of 1:150 was applied on both icebergs and 

waves. The sizes of the model icebergs varied in the range from 60 cm to 10 cm. The iceberg 

displacement along the tank was measured by a laser range meter. The main objective of the 

experiment was to study the iceberg drift caused by waves and to estimate the drag coefficients for 

the mean drift of icebergs in waves. 

This paper discusses the technical aspects of measuring floaters drift in smaller scale experiments 

with a scaling factor of about 1:400. In such experiments, the sizes of model icebergs are on the 

order of several centimeters, and the length of the tank can reach several meters. Organizing 

laboratory experiments on this scale is much cheaper. Surface waves with a length of 15-30 cm 

are described by standard dispersion equations, and the effects of surface tension are negligible 

and can be ignored. Installing sensors on model icebergs is problematic due to their small size. 

The water pressure forces acting on the floaters are also very small. In this paper, we describe 

methods for measuring the wave motion of a floater and the force of water on a floater in small 

scale experiments. The second section of the paper describes small-scale experiments conducted 

in the wave flume of the University Centre in Svalbard (UNIS). The third section of the paper 

discusses a method for processing video recordings of floater drift to reconstruct its motion. The 

use of fiber optic sensors to measure wave drift force on a floater is discussed in the fourth section 

of the paper. The main results of the study are formulated in the conclusions.             

2 ORGANIZING OF EXPERIMENT 

The experiment was organized in a wave flume at UNIS (Fig. 1). The acrylic wave flume was 3.5 

m long, 50 cm high and 30 cm wide. The depth of water in the flume was 30 cm. A plunger-type 

wavemaker generated waves with a frequency of less than 4 Hz. The wave amplitude in the flume 

was determined by the frequency. In the experiment we investigated the drift of floaters made of 

paraffin. The density of paraffin was 800 kg/m3. The floaters were cylindrical in shape, less than 

7 cm in diameter and less than 6 cm in height. All floaters had stable buoyancy with a vertical axis 

in calm water. The floaters were covered with a thin dark blue plastic film to avoid the effect of 

light reflection on the video images of the floaters. In this paper, we present experimental results 

obtained with a floater of 67 mm diameter and 57 mm height.  

To monitor the motion of the floaters, we installed a video camera on the side of the flume and 

recorded all experiments through the side wall of the acrylic flume at the water level. Figure 2 

shows an example video frame. To calculate the length and amplitude of the waves, vertical and 



horizontal length scales glued to the wall of the flume were used. The floater diameter was used 

as a length scale to calculate the metric characteristics of its motion. To reconstruct the movement 

of floaters at a distance of 20 cm, only video recording analysis was used.      

 

 
 

Figure 1. Flume with wave maker at UNIS. 

 

 
 

Figure 2. An example of a video frame showing the cylindrical floater drifting under the action of 

a periodic wave of 24 cm in length. 



Figure 3a shows schematics for measuring of wave drift force on a ship in the Maruo (1960) model 

tests. This method was modified due to the small forces applied to the floaters in our tests (Fig. 

3b). The force was measured using a calibrated Fiber Bragg Grating (FBG) strain sensor extended 

across the wave flume and mounted on a heavy frame that had no contact with the flume (Fig. 4). 

The FBG system used was designed by Advance Optic Solutions GmbH (Germany, 

https://www.aos-fiber.com/ ). The fiber with FBG sensor was connected to a floater by a thin 

thread passing a bearing at water level and thin metal rod at the top of the flume as it is shown in 

Fig. 3b. It was important that the thread was in the air, and possible contacts of the thread with 

water were minimized.   
 

a) b)  
Figure 3. Schematics of measurement of drift force from Maruo (1960) (a) and used in the 

described experiment (b). 

 

 
Figure 4. Photograph of the experiment in UNIS laboratory 

https://www.aos-fiber.com/


 

FBG sensor measured the peak wavelength of the light reflected by the Bragg grating burned inside 

the fiber. FBG strain sensors are designed to operate in the wavelength range from 1510 nm to 

1595 nm. Changes in the wavelength are recalculated in the fiber strain (Marchenko et al, 2016). 

In the experiment we used FBG strain sensor with working wavelength around 1542 nm. We didn’t 

calculate strains and used the raw sensor data to calculate the force applied to the sensor through 

the thread.  Calibration showed that a 20 g weight affected the change in the reflected wavelength 

by approximately 0.1 nm. The FBG strain sensor of 1 mstrain resolution allowed us to measure 

very small forces.    

3 PROCESSING OF VODEO RECORDINGS 

Video recordings of the experiment were used to reconstruct the movement of floating disks. The 

recording rate has b set at 50 frames per second. The analysis was performed in Mathematica 

Wolfram software and included the following steps.  

Step 1: the Video function has been applied to download videos in the software environment.  

Step 2: the VideoExtractFrames function has been applied to extract video frames corresponding 

to floaters movements in a 20 cm long observation area.  

Step 3: the ImageCrop function was applied to each frame to produce a cropped footage that 

includes only the floater, water and water surface.  

Step 4: the DominantColors function was applied to get the floater color.  

Step 5: the ImageValuePositions function was applied to get the pixel coordinates of a floater 

image on the frames. 

Step 6. The mean values of the coordinates of floater pixels were calculated for each cropped frame 

and then converted to actual coordinates 𝑥 = 𝑥(𝑡𝑖) using the floater diameter as the length scale 

and the actual time 𝑡𝑖 equal to the frame time. Finally, the actual displacement of the floater was 

interpolated by the functions 𝑥 = 𝑥(𝑡) and 𝑧 = 𝑧(𝑡) using the Interpolation function.  

Step 7. The linear Fit of the series 𝑥(𝑡𝑖)  was constructed: 〈𝑥〉 = 𝑥0 + 〈𝑉〉𝑡 to obtain the mean drift 

velocity of the floater 〈𝑉〉. 
Step 8. The linear Fit of the series 𝑧(𝑡𝑖)  was constructed: 〈𝑧〉 = 𝑧0 + 〈𝑉𝑧〉𝑡 to exclude from 

consideration floater motion in the orthogonal to the 𝑥-axis direction caused by small tilt of video 

camera. 

Step 9. The oscillating part of floater displacement was calculated with the formulas 

 

𝛿𝑥𝑖 = 𝑥(𝑡𝑖)  − 〈𝑥〉, 𝛿𝑧𝑖 = 𝑧(𝑡𝑖)  − 𝑧0, 𝑡 = 𝑡𝑖,                                                                                      (1) 

 

and the series 𝛿𝑥𝑖 and 𝛿𝑧𝑖 were interpolated as functions 𝛿𝑥(𝑡) and 𝛿𝑧(𝑡).  

Step 10. Based on the observations we assumed the oscillating surge motion of floaters is closed 

to sinusoidal motion with periods of waves exciting the motion. The amplitudes 𝛿𝑥0 and 𝛿𝑧0 of 

the oscillating surge motion of disks were estimated with the formula  

 

 𝛿𝑥0 = 1.416 StandardDeviation[𝛿𝑥𝑖], 𝛿𝑧0 = 1.416 StandardDeviation[𝛿𝑧𝑖],               (2) 

 

obtained for pure sinusoidal oscillations. 

 



Next, we will illustrate an example of processing of a video recording of a floater with a diameter 

of 6.6 cm and a height of 5.5 cm. The floater was covered with dark blue plastic. The video 

recording was downloaded to Mathematica Wolfram software using the Video function. 

 

v1 = Video["S2560007. mp4"];                                                                                                           (3) 

 

where S2560007.mp4 is the file name. A video frame of the recording is shown in Fig. 2. One 

can see that the plastic film was destroyed from the left side of the floater near its surface. The 

ImageCrop function was used to cut the frame edges, and the function VideoExtractFrames was 

used to create a set of images corresponding to the position of the floater on wave over each 1/50 

of second starting at 𝑡 = 2 s and ending at 𝑡 = 6 s, where 𝑡 = 0 correspond to the first frame of 

the video recording v1. We example two versions of the ImageCrop function given by  

     

vc1 = ImageCrop[ImageCrop[v1, {2100, 800}, {Left, Bottom}], {1200, 400}, {Right,Top}];   (4a) 

vec1 = VideoExtractFrames[vc1, Interval[{2, 6}]]; 

 

vc1 = ImageCrop[ImageCrop[v1, {1920, 200}], {1200, 30}, {Right, Top}];                             (4b) 

vec1 = VideoExtractFrames[vc1, Interval[{2, 6}]]; 

 

 
a) 

 
b) 
Figure 5. Video frame #80 extracted from the video v1 after the cutting of the frame edges using 

set of commands (4a) (a) and (4b) (b). 

 

Operations (4a) and (4b) create cropped video frames similar to those shown in Fig. 5a and Fig. 

5b, respectively.  Further processing of video frames after performing operations (4a) allows us to 

reconstruct the vertical and horizontal movements of the floater’s center of gravity. The influence 

of the water free surface distorts the analysis and leads to a decrease in the accuracy of movement 

recontraction. Further processing of video frames after performing operations (4b) allows us to 

reconstruct the horizontal movements of the floater only but leads to higher accuracy of horizontal 

movement recontraction. Applying the function DominantColors to video frame 1 after performing 

operations (4a) showed three dominant colors 

 

dc = DominantColors[vec1[[1]]];                                                                                          (5a) 



 
 
Applying the function DominantColors to video frame 1 after performing operations (4b) showed 

two dominant colors 

 
dc = DominantColors [vec1[[1]]] ;                                                                                                                    (5b) 

 
 

Color dc[[2]] corresponds to the floater. The ImageValuePositions function returns the positions 

of pixels with color dc[[2]] in the standard image coordinate system. The operation below 

constructs the list with elements including vertical and horizontal coordinates of each video frame 

within a distance 𝑑 from dc[[2]] 
 

ivp = Table[ImageValuePositions[vec1[[𝑖]], dc[[2]], 𝑑], {𝑖, Length[vec1]}];                              (6) 

 

The distance 𝑑 was chosen visually to obtain the largest number of floater pixels while excluding 

pixels outside the floater. Figure 6a and 6b show pixels of two selected frames #50 and #100 

constructed using operation (6) at 𝑑 = 0.09 with the set of frames vec1 obtained by applying 

operations (4a). Figure 6c and 6d show pixels of two selected frames #50 and #100 constructed 

using operation (6) at 𝑑 = 0.09 with the set of frames vec1 obtained by applying operations (4b).   

 

 
Figure 6. Pixels with color dc[[2]] in video frames #50 and #100 after the cutting of the frame 

edges using operations (4a) (a,b) and (4b) (c,d). 

 



 The deviation of the pixel number from the mean pixel number in the frames characterizes the 

accuracy of the reconstruction of disk images after the applying operations (4)-(6). The number of 

pixels in each frame and the mean number of pixels are calculated with the operations 

 

Nivp = Table[Length[ivp[[𝑖]]], {𝑖, Length[ivp]}];                                                                        (7) 

mivp = Mean[Nivp]; 
 

Then, we calculated the ratio 𝛿 of the standard deviation of the pixel numbers in frames to the 

mean number of pixels using the operation 

 

𝛿 = StandardDeviation[Nivp] mivp⁄ ;                                                                                           (8) 

 

We found that 𝛿 = 0.17 for the frame list ivp obtained after the application of operations (4a), 

(5a), and (6), and 𝛿 = 0.02 for the frame list ivp obtained after the application of operations (4b), 

(5b), and (6). This means that the accuracy of the reconstruction of disk images is much higher 

when the ImageCrop function is determined by (4b). In this case the water free surface doesn’t 

affect the pixel analysis.     

The following two operations were used to construct the mean horizontal (ddx) and vertical (ddz) 

positions of the floater in each video frame 

 

ddx = Table [Mean [ivp[[𝑖]]] [[1]], {𝑖, Length[ivp]}] ;                                                                 (9) 

ddz = Table[Mean[ivp[[𝑖]]][[2]], {𝑖, Length[ivp]}]; 
 

 
 
Figure 7. Horizontal (a) and vertical (b) positions of the floater in the standard image coordinate 

system versus the number of video frame. Horizontal (c) and vertical (d) coordinates of the gravity 

center of the floater in metric frame of reference versus time. Straight lines show the linear 

interpolations of the dependences.  



 

We assume that the mean positions determined by formulas (9) are close to the positions of the 

center of gravity of the floater. Figures 7a and 7b show the mean horizonal and vertical positions 

of the floater versus frame number. Interestingly, the mean horizonal positions were almost 

identical for the vec1 lists constructed using operations (4a) and (4b). In other words, the horizontal 

movements of the disk images shown in Fig. 6a and 6b and Fig. 6c and 6d were almost identical. 

This means that the free water surface mainly influenced the reconstruction of the vertical 

movements of the floater.     

Figures 7c and 7d show the mean horizonal and vertical coordinates of the floater in metric 

coordinates versus time. Straight lines in Fig. 7c and 7d show the linear interpolations of the 

dependences 𝑥(𝑡) and 𝑧(𝑡). The speed of wave drift in the horizontal direction equals 〈𝑉〉 = 4.6 

cm/s. The mean displacement of the floater in the vertical direction is explained by the tilt of the 

video camera. The vertical drift was subtracted from the dependence 𝑧(𝑡) to get actual motion of 

the floater in the vertical direction.  Figure 8a shows the floater trajectory after the subtraction of 

the mean drift in the vertical direction. Figure 8b shows the trajectory of the oscillatory motion of 

the floater, obtained after subtracting the mean drifts in the horizontal and vertical directions.   

 

 
Figure 8. Trajectory of the floater’s center of gravity (a). Trajectory of oscillating motion of GC 

of the floater (b). Solid black line shows the trajectory of water particles at the surface of deep 

water caused by the propagation of sinusoidal wave with the length 24 cm and the amplitude 0.5 

cm.    

 

The wavelength and wave amplitude were estimated form video recordings as 24 cm and 5 mm. 

Using the deep-water approximation, we calculated the wave frequency of 2.55 Hz and the Stokes 

drift velocity on the surface of 1 cm/s. The mean drift velocity of the floater was larger the Stokes 

drift velocity by 4.6 times. The trajectories of surface water particles are circles with a radius of 5 

mm. Black solid line in Fig. 8b shows the trajectory of the surface water particle in comparison 

with the trajectory of the oscillatory motion of the floater.  

The mean surge and heave amplitudes were calculated to be 34 mm and 47 mm, respectively. The 

heave amplitude practically coincided with the wave amplitude. The surge amplitude was smaller 

the wave amplitude. The inclined axis of the floater trajectory in Fig. 8b is explained by the 

dynamic pitch of the floater during the drift, which is absent in calm water. The pitch is also visible 



in Figures 5 and 6. The dependence of pitch angle from time could be reconstructed using pixel 

analysis, but this operation is not described in the paper.        

4 MEASUREMENT OF WAVE DRIFT FORCE 

Wave drift force is the second order force applied to a submerged body by periodic wave with 

nonzero mean value averaged over the wave period (Faltinsen, 1990). The wave drift force on 

vertical cylinder in deep water is calculated by the formula 

 

𝐹𝑊𝐷 =
𝑔𝜌𝑎2𝐷

8
𝑋𝑊𝐷 ,                                                                                                                                       (10) 

 

where 𝑎 is the wave amplitude, 𝐷 is the diameter of the cylinder, 𝜌 is water density, 𝑔 is the gravity 

acceleration. Function 𝑋𝑊𝐷(𝐷𝑘, ℎ𝑘) depends on the dimensionless parameters 𝐷𝑘 and ℎ𝑘, where 

𝑘 is wavelength, and ℎ is the draft of the cylinder. Usually, 𝑋𝑊𝐷(𝐷𝑘, ℎ𝑘) has local maximum 

around 𝐷𝑘 ≈ 2, and 𝑋𝑊𝐷 ≥ 2.5 around the local maximum (Nossen et al, 1991). In our experiment 

𝑎 = 8.5 mm, 𝐷 = 66 mm, and wave frequency was equal 𝑓 = 3.033 Hz. The wavenumber 

calculated from the dispersion equation for deep water equals 𝑘 = 37 m-1, and 𝐷𝑘 ≈ 2.44. This 

results in an estimate of 𝐹𝑊𝐷 ≥ 0.015 N. Measuring wave drift forces is not an easy task because 

they are small. 

     

 
Figure 9. Wavelengths recorded by FBG strain sensors during the experiment versus time (a). 

Change of wavelength during strongest pulse versus time (b).   

 

Figure 3b shows that the wave drift force 𝐹𝑊𝐷  applied to the floater in the horizontal direction 

results in a force 1.15𝐹𝑊𝐷 applied to the fiber with FBG sensor in the downward direction. The 

force 1.15𝐹𝑊𝐷 is proportional to the change of the wavelength measured by FBG strain sensor. It 

is calculated using calibration. 

Figure 9a shows an example of recorded wavelengths during the experiment. One can see that 

changes in the wavelengths were smaller 0.1 nm. Therefore, forces applied to FBG strain sensor 

were smaller 0.2 N. Figure 9a shows many peaks in tension of FBG sensor which are associated 

with jerks of the thread. The number of threads equals 𝑁 = 86 when time changed from 50 s to 

140 s in Fig. 9a. Figure 9b shows largest peak of wavelengths versus time. The duration of the 

peak was 0.23 s, while the wave period was 0.33 s. Duration of all other peaks in Fig. 9a were also 

smaller the wave period. We assumed that the mean duration of the peaks equal ∆𝑡 = 0.2 s.    

The mean value of wavelength change due to jerks of the thread is calculated with the formula 



 
∆𝜆 = ∫ (𝑊𝐿(𝑡) − 𝑊𝐿0)𝑑𝑡

140𝑠

50𝑠
(𝑁∆𝑡)−1 ,                                                                                           (11) 

 
where 𝑊𝐿(𝑡) is the wavelengths measured in the experiment versus time and shown in Fig. 9a, 

and 𝑊𝐿0 = 1542.6445 nm is the background wavelength measured in the experiment before 

wave maker started operating. Using the experimental data, we calculated ∆𝜆 = 0.0094 nm. 

According to the calibration the force associated with this wavelength equals 𝐹𝑒𝑥𝑝 = 0.018 N.  The 

horizontal projection of this force equals 0.016 N, which is very close to the wave drift force 

estimated using formula (8). 

5 CONCLUSIONS 

Processing of video recordings using Wolfram Mathematica software has shown good results in 

reconstructing 2D movements of cylindrical floaters in wave flume. The dark blue color of floaters 

helped to avoid the influence of light reflection on the pixel analysis of video frames. Following 

this method, we calculated the horizontal and vertical coordinates of the center of gravity of the 

cylindrical floaters for each video frame of the video recording with a frame rate of 50 frames per 

second. This allows us to plot the trajectory and velocity of the center of gravity with the same 

time resolution. We found that the accuracy of reconstruction of horizontal movements is higher 

than that of vertical movements of floaters due to the influence of the free water surface on the 

pixel analysis of video recordings. To avoid this effect, the method should be modified by using 

only submerged part of the floaters in the pixel analysis. 

It was found that the mean drift speed of floaters is several times higher than the Stokes drift speed 

at the water surface. The amplitude of floater movements in the vertical direction was similar to 

the wave amplitude. We observed pitch oscillations of floaters around some constant nonzero 

pitch, which was absent in calm water. We believe that reconstruction of the pitch angle 

dependence on time is possible using the pixel analysis and Mathematica Wolfram software. The 

observed wave drift of the floaters can be classified as diffraction-modified Stokes drift (Xiao et 

al, 2024,2025).   

Using of FBG strain sensor allowed us to measure the wave drift force on a cylindrical floater. The 

floater was connected to the fiber with FBG sensor by a thin thread so that the force applied to the 

floater was measured by FBG sensor. The most important points in organizing the experiment 

were the mounting FBG sensor on a heavy frame that had no contact with the wave flume, and the 

use of very thin thread connecting the floater to FBG sensor. The thread should hang in the air and 

have minimal contact with water. The result of the measurement was a set of force pulses with a 

duration shorter than the wave period. We found that the mean value of the force, averaged over 

all pulses, is close to the wave drift force on a fixed floater with a vertical axis and the same 

diameter as in the experiment.  

We believe that the combination of the two methods discussed above makes it possible to calculate 

the drag coefficients of floaters moving under the influence of waves, depending on their shape 

and wave properties.      
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