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ABSTRACT 

Icebreakers are essential assets to enable safe Arctic and subarctic operations. These 
specialized ships have strengthened hulls and robust propulsion systems to enable them to 
manage ice and open shipping lanes through sea ice. Accurately predicting icebreaker 
performance is critical for designing vessels that are fit for purpose. A key factor in 
icebreaker performance prediction is understanding ice resistance, which determines an 
icebreaker’s capability to operate effectively in icy conditions. In recent years, Machine 
Learning (ML) methods have been increasingly utilized to predict ship efficiency, typically 
using parameters such as length, beam, draft, and speed. This study expands on this approach 
by integrating both fundamental vessel parameters and environmental factors, including ice 
thickness, along with detailed hull geometry data into ML models. The objective is to assess 
how these factors enhance the accuracy of ice resistance predictions. The dataset includes ten 
different icebreakers, with model tests conducted by the National Research Council of 
Canada’s Ocean, Coastal, and River Engineering Research Centre (NRC-OCRE). We trained 
boosting models to predict total ice resistance. This study demonstrates how data-driven 
approaches can result in novel multivariate regressions of ice resistance and highlights the 
improvements in prediction accuracy achieved by incorporating hull geometrical 
characteristics. 
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1. INTRODUCTION 
The ability to navigate through ice-covered waters is crucial for Arctic and subarctic 
operations, where icebreakers play an essential role in maintaining safe and efficient 
maritime transit. These specialized vessels are designed with reinforced hulls and powerful 
propulsion systems to break and clear ice, ensuring accessibility for commercial and research 
missions. Predicting the performance of icebreakers in such extreme conditions is 
fundamental for optimizing vessel design, operational efficiency, and safety (Xue, et al., 
2024, Zhou, et al., 2023). 
One of the key challenges in icebreaker design is accurately estimating ice resistance, which 
directly influences power requirements, fuel consumption, and overall maneuverability. 
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Traditional methods for predicting ice resistance rely on empirical formulas, scale model 
testing, and computational fluid dynamics (CFD) simulations (Dick, et al.,1989). While these 
approaches provide valuable insights, they can be time-consuming, expensive, and limited in 
their ability to generalize across different vessel designs and ice conditions (Bassam, et al., 
2022). 
Recent advancements in data-driven methodologies, particularly Machine Learning (ML), 
offer new opportunities for improving ice resistance predictions. ML models have 
demonstrated success in various maritime applications, from ship performance optimization 
to automated navigation (Yan et al., 2022; Islam, 2021). However, most existing ML models 
utilize fundamental ship parameters—such as length, beam, draft, and speed—without fully 
incorporating the detailed hull geometry (Zhou et al., 2023; Kim et al., 2020). 
In recent years, ML approaches have been applied to predict ship performance metrics, 
including ice resistance. A study proposed an artificial neural network (ANN) model to 
estimate ship resistance in ice-covered waters, demonstrating the potential of ML in this 
domain (Sun et al., 2022). Another research effort combined the challenges of predicting ice 
resistance and propulsion power for polar ship design. The study focused on developing an 
ANN model to predict the propulsion power of polar ships, considering traditional 
requirements and test data to select appropriate input features and training datasets (Zhou, et 
al. 2023). Furthermore, a study explored the use of an ANN to predict ice resistance for ice-
going ships in level ice, highlighting the applicability of ML techniques in this field (Kim, et 
al., 2020). These studies collectively indicate a growing interest in leveraging ML to improve 
the prediction of ice resistance and the overall performance of icebreaking vessels. However, 
there remains a need for further research that integrates detailed hull geometry as well as ice 
flexural strength and ice thickness into ML models to enhance predictive accuracy. 
This study leverages an ML technique to enhance the predictive accuracy of ice resistance by 
integrating ice thickness and flexural strength, fundamental vessel parameters, and detailed 
hull geometrical characteristics. Using a dataset of ten icebreaker scale model tests conducted 
by the National Research Council of Canada’s Ocean, Coastal, and River Engineering 
Research Centre (NRC-OCRE), we developed a boosting learning model to estimate total ice 
resistance. By incorporating hull geometrical characteristics alongside traditional parameters, 
this research demonstrates the potential of ML-based approaches to refine ice resistance 
predictions. The findings contribute to the ongoing evolution of ship design methodologies, 
supporting the development of more efficient and capable icebreakers. 

 
2. METHODOLOGY  
This study utilizes a data-driven approach based on machine learning to predict icebreaker 
resistance. The methodology encompasses data acquisition, feature engineering, model 
training, and validation. 
 

2.1 DATA ACQUISITION  
The foundation of our dataset comprises data from ten distinct icebreaker designs. The data is 
derived from model tests conducted by the National Research Council of Canada’s Ocean, 
Coastal, and River Engineering Research Centre (NRC-OCRE).  One of the NRC’s standard 
ice model tests, described by Wang (2023), addresses the data acquisition process. These ice 
model tests consist of three different tests—open water, level ice, and presawn tests—in order 



to derive the ice resistance regression equation. A full description of the test and analysis 
method can be found in Wang (2023). The ice resistance data for the study was derived from 
the regression equations in Wang (2023). It is noted that each hull form has a unique ice 
resistance regression equation. The range of ice conditions, as well as the ship speed, are 
shown below: 

• Speed: 3-7 knots 
• Flexural strength of ice: 300 KPa to 700 KPa 
• Ice thickness: 0.5 m to 1.5 m 

 

2.2 FEATURE ENGINEERING 
This study goes beyond parameters like external environmental factors and fundamental 
vessel parameters by incorporating detailed hull geometry characteristics. In addition to basic 
vessel parameters (such as length and draft), the following geometric features were extracted 
or calculated for each icebreaker design: 

• Stem Angle: The angle of the stem at the waterline influences the initial ice impact. 

• Flare Angle: The angle of the hull plating relative to the vertical, affecting the ice-
breaking process. 

• Waterline Angle: The angle of the waterline at the bow influences the interaction between 
the hull and the ice sheet. 

This study emphasizes ship geometry input, expanding to include 39 points of waterline 
angles, 8 flare angles, and two stem angles for each vessel. Figure 1 is an illustration of the 
ship's angles, generated using SpaceClaim. This expanded feature set aims to capture the 
influence of hull shape on ice resistance more comprehensively. The relationship between 
hull form parameters, including angles and ship resistance, is often non-linear. To address 
these non-linearities, we employed polynomial feature engineering, a technique commonly 
used to model complex relationships (Zheng, et al., 2018, Yang, et al., 2021). In terms of 
feature engineering, we opted for two-degree polynomial features, which allow us to generate 
new features from existing ones. For example, if the dataset contains two features, x and y, 
the polynomial transformation generates the following new features: [x, y, x², y², x·y]. This 
transformation increases the feature count from two to five. 

 
2.3. MACHINE LEARNING MODELS 
We employed a machine learning model to predict total ice resistance. We used XGBoost 
(Extreme Gradient Boosting) a gradient boosting algorithm known for high accuracy and 
efficient training, particularly in regression tasks with complex, non-linear relationships. In 
this study, predicting total ice resistance (RTP) involves many interacting vessel geometry 
and environmental parameters, and XGBoost’s tree-based structure effectively captures these 
interactions. XGBoost builds an ensemble of decision trees sequentially, with each tree 
correcting the errors of its predecessors. Hyperparameter tuning was performed using cross-
validation to optimize model performance, which will be described in the following 
subsections. The model was implemented using Python 13.12.2 and the scikit-learn 1.5.1 and 
XGBoost 2.1.3 libraries (Chen, et al., 2016). 
 



 
Figure 1. Ship's angles, generated using SpaceClaim 

 

2.4 TRAINING AND VALIDATION 
The dataset was split into training and testing sets. The number of instances (rows) is 8415, 
and the number of features (columns) is 57 before applying the polynomial feature and 1710 
after applying the polynomial feature engineering. The training set was used to train the 
XGBoost model, while the testing set was used to evaluate their performance. We performed 
grid-search cross-validation for parameter tuning. The process was as follows. 
 

2.4.1 CROSS-VALIDATION STRATEGY  
In our study, we employed a cross-validation strategy to ensure the robustness and 
generalizability of our model. We utilized a total of ten vessels, denoted as M1 to M10, in our 
experimental design. In our block cross-validation, each block is a vessel, and each vessel 
has about 800 instances. The cross-validation process was structured as follows: 
1) We reserved one vessel (M1) with all its instances for final validation, setting it aside to 
assess the model's performance on completely unseen data after the training and testing 
phases. 
2) The remaining nine vessels (M2 to M10) were used in a block cross-validation scheme 
(Valavi, et al., 2018).  
3) Each vessel data is a “block” and the process was to leave one block for testing and train 
on the remaining blocks. For example, for the first block cross-validation iteration we test on 
M2, and train on M3 to M10.  
This approach allowed us to maximize the use of our limited dataset, with each vessel (M2 to 
M10) serving as a test set once while the model was trained on the remaining vessels. This 



strategy provided an assessment of our model's performance across different subsets of the 
data, enhancing the reliability of our results. 
Upon completion of the nine rounds, we utilized the held-out vessel (M1) for final validation, 
obtaining an estimate of our model's performance on entirely unseen data. This cross-
validation strategy ensured a thorough evaluation of our model's capabilities and 
generalizability. In each round, we calculated the Mean Squared Error (MSE) to measure the 
average squared difference between predicted and actual values. The MSE scores from all 
nine rounds were averaged to provide an overall performance metric for that set of 
parameters. 

 
2.4.2 GRID SEARCH IMPLEMENTATION 
After completing the block cross-validation process for one set of parameters, we adjusted a 
single parameter according to our predefined grid. We then repeated the entire block cross-
validation process with the new parameter set. This procedure was iterated for all parameter 
combinations in our grid with the following parameter ranges: 

‘max_depth’ set to {3, 4, 5}, which controls the maximum depth of each tree;  
‘learning_rate’ set to {0.05, 0.1, 0.2}, which determines the step size at each iteration to 
minimize loss;  
‘n_estimators’ set to {100, 200, 300}, representing the number of trees in the ensemble;  
‘colsample_bytree’ set to {0.3, 0.5}, specifying the fraction of features randomly selected for 
each tree. 

• Parameter Selection: We compared the average MSE scores across all parameter 
combinations. The parameter set yielding the lowest average MSE was selected as 
optimal. 

• Final Validation: After identifying the optimal parameters through this grid search 
process, we trained a final model using these parameters on all the data from vessels M2 
to M10. We then evaluated this model on the held-out validation set (M1) to obtain an 
assessment of our model’s performance on entirely unseen data. 

This approach allowed us to explore the parameter space while avoiding data leakage. By 
implementing the grid search, each parameter combination was evaluated across all data 
subsets. 

 

3. RESULTS 
The features and the target considered in the results are stated in Table 1. The angles are 
illustrated in Figure 1. 

 
 

 
 

 



Table 1. Feature identifiers and descriptions. 
Identifier Description 

stem_at_draft Stem Angle 
flare_pi Flare Angle 

waterline_beam_pi Water line Angle 
hP (m), sfP (Pa) Ice Thickness, Ice Flexural Strength 

VP (knots) Vessel Speed 
RTP (KN) Total Resistance (target) 

SN, FN, TP Strength Number, Thickness Froude Number, Draft 
 
The flare angles, shown as flare_p975 to p799, are taken along the ship's length (LPP) from 
97.5% from the stern to 79.9% (or 2.5% to 20.1% from the bow), providing insight into the 
curvature of the hull in these sections (a total of 8 data points). The waterline beam angles, 
presented as waterline_beam_p1 to p40, represent the angles measured from the center of the 
beam and extending outward to cover up to 40% of the beam's width (a total of 39 data 
points). These measurements help describe how the waterline changes from the centerline. 
Additionally, two stem angles at the front of the ship are measured: one at the full draft and 
another at 90% of the draft. Please see Wang (2023) for SN and FN definitions. 
 
3.1 FEATURE IMPORTANCE  
To gain further insights into the impact of individual features on the model's predictions, we 
employed SHapley Additive exPlanations (SHAP). SHAP can present feature contributions 
for the prediction. A positive SHAP value indicates that the feature contributed to increasing 
the prediction, while a negative SHAP value indicates that the feature contributed to 
decreasing the prediction (Lundberg, et al., 2017). By analyzing the SHAP values for each 
target variable, we can identify the features that have the most significant influence on the 
model's predictions, providing a more granular understanding of the relationships between 
the features and ship resistance components (Figure 2). 
 

3.2. PERFORMANCE METRICS  
The performance of the machine learning models was evaluated using two key metrics: Mean 
Squared Error (MSE) and R-squared (R²). MSE quantifies the average squared difference 
between the predicted and actual ice resistance values, providing a measure of the overall 
prediction accuracy. R² indicates the proportion of variance in the ice resistance that is 
explained by the model, reflecting the goodness of fit. When incorporating all angle-related 
features, the model achieved an MSE of 9456.448 and an R² value of 0.953 for predicting 
total resistance, RTP (KN). In contrast, when excluding angle-related features, the MSE 
increased to 28300.743, and the R² value decreased to 0.861, demonstrating the significant 
contribution of hull geometry information to improving prediction accuracy. 

 



 

Figure 2. SHAP values for total resistance. 

 
 

3.3 PREDICTION AND ACTUAL 
Figure 3 describes the following: In (a), the time series plot compares actual and predicted 
total resistance (RTP) values across the instances, which is the number of rows (indexes). The 
model closely tracks the actual resistance patterns, capturing many of the fluctuations of ice 
resistance. These show significant variance, but the variance is properly captured in the 
model. In (b), the residual plot displays the distribution of residuals (the difference between 
actual and predicted RTP values) against the predicted RTP. Ideally, residuals should be 
randomly distributed around zero. In (c), the scatter plot of actual versus predicted RTP 
values demonstrates a strong positive correlation, indicating that the model effectively 
captures the overall trend in ice resistance. Data points cluster closely around the red dashed 
line, which represents perfect predictions.  



 
(a) 

 
                                     (b)                                                               (c) 

Figure 3. (a) Actual vs. Predicted Total Resistance Over Indexes (b) Residual Plot: RTP 
(KN) (c) Actual vs. Predicted RTP (KN) 

 

CONCLUSION 

This research has shown the potential of machine learning to advance the prediction of 
icebreaker resistance, a critical factor in the design and operation of these specialized vessels. 
The integration of hull geometry, specifically multiple stem angles, flare angles, and 
waterline angles, alongside traditional parameters and environmental conditions, led to an 
improvement in prediction accuracy. The XGBoost model, trained on data from ten 
icebreaker scale model tests, effectively captured the complex, non-linear relationships 
between these factors and ice resistance. In future work, we want to look in more detail at the 
sub-resistances, whose summation contributes to the overall ice resistance.  Additionally, we 
plan to apply a min-max scaler to features with a large dynamic range and to the target 
variables.  
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