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ABSTRACT
With decreasing ice thickness and ice extension in summer, shipping in and close to ice-covered
areas and the marginal ice zone are of raising interest. To determine the exact forces due to the
icebreaking and to enable a more precise and less over dimensioned design of ice-going vessels,
models can be a helpful tool. To use these models to simulate the icebreaking process, the ice
has to be modelled as well. This work presents a new randomized approach for the generation
of ice floe fields based on common simple ice observation parameters and reflecting the real ice
floe arrangement: The ice floe field is modified by constrained optimization after the ice floes
are placed randomly. The generated ice floe fields are evaluated for different parameter sets, to
determine the influence and sensitivity of the different ice observation parameters. The filling
of the parameter space depending on the number of generated floe fields per parameter set is
estimated. Furthermore, suggestions on how to use these floe fields are given.
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INTRODUCTION
While shipping in ice-covered areas is continuously a topic of high interest, especially with
decreasing ice thickness in summer, the exact forces due to the icebreaking process still requires
further attention. In order to enable a more precise and less over dimensioned design of ice-
going vessels, models are used. To apply these models on full-scale data, the ice conditions
have to be monitored and prepared for being an input value to the simulation tools. For most
of the test scenarios, the ice conditions are only available as egg code or extended observations
based on the egg code for relatively large regions.
In the past, some approaches have been conducted to generate ice floe fields. Løset (1994)
modelled a floe field by circular plates ordered in a full rectangular grid. Sun and Shen (2012)
also placed the ice floes in a regular grid. In both cases, the floe fields can change during the
simulation time dynamically, but the initial conditions are the same for all simulation runs.
To generate more natural floe fields without repeating patterns in the floe constellation, Huang
et al. (2022) developed two methods for the floe field generation. For floe fields with lower ice
concentration (≤ 70%), they introduced a sequential generator that places one floe per step and
checks the condition of no overlapping of floes. Especially with higher ice concentrations, this
generator might end in a dead end, if not sufficient space for floe placing is left. For higher



ice concentrations, they presented the genetic generator, which is able to place floes in a field
with a higher ice concentration at the price of higher computational costs. Both generators take
the concentration and size distribution as input parameters. Another approach for the floe field
generation is the application of Voronoi diagrams as shown by Hopkins et al. (2004) and Zhang
et al. (2024). This generator creates ice floes with arbitrary shapes, but the size distributions can
not be defined by a constant input value due to the random placement of the Voronoi seeds.
The clustering behaviour of ice floes and the conglomeration of smaller floes around larger
ones was described by Herman (2012). This phenomenon is ignored by the completely random
placement of floes in the existing floe field generators or in small scale experimental setups
(Zong et al., 2020).
This work combines the random placement of ice floes with the observed clustering behaviour
of ice floes and presents an algorithm that works for arbitrary ice concentrations by placing ice
floes and then optimizing the whole floe field instead of single floe positions. Like this, the
relation between the floe positions is respected and the missing representation of clustered ice
floes can be solved.
Applying a model on full-scale data to compare different ship parameters needs full-scale input
data. Neither the egg code nor the extended ice observations contains specific information about
the positioning of the ice floes, but only the size, thickness and concentration distributions. To
determine the positions for each floe and create a representable floe field based on the observed
data, this work presents a method and evaluates its applicability for simulating full-scale tests.

MODEL
In this work, the ice floes are modelled as circular disks as described by Herman (2011). To
transform the ice observation data to ice floe fields usable as input to simulations, e.g. icebreak-
ing simulations, the ice distributions are first computed, then all floes are placed randomly and
afterwards the whole floe field is optimized regarding no intersections as described in (Sapp,
2023). The ice observation data used in this work are an extended version of the egg code
principle and consists of the ice concentration c̄ice, the ice thickness h̄ice and the diameter distri-
bution d% within the floes. The ice concentration and the ice thickness are mean values for the
whole observed area. To describe the diameter distributions d%, the different size categories

dice = {2.5, 7.5, 15} m (1)

are defined. These size categories can be adapted and extended, to fit varying sets of ice condi-
tions.
The number of floes per size category is

md = d%mfloe (2)

with the total number of floes

mfloe = ⌈Aice,tot

Āice

⌉ (3)

with the total ice covered area

Aice,tot = c̄iceAfield, (4)

the mean area per floe

Āice = ⟨aice,cat,d%⟩ (5)



Figure 1: Graphical overview about the optimization problem solving the overlapping-free floe
placement.

and the area per size category

aice,cat = π
dice

2

2

. (6)

An example for the diameter distribution is

d% = {20, 40, 40} % (7)

as given by the parameter sets A and B in Table 1.
If the number of floes per diameter category md is known, the floes are placed randomly in a
defined rectangular field of length xfield and width yfield by setting the centre position of every
ice floe i to

xi
pos =

(
xrandxfield

yrandyfield

)
, xrand, yrand ∈ [0, 1]. (8)

Every floe is described by a position xi
pos and a radius ri, which leads to the floe vector

(xi
pos, y

i
pos, r

i) for every floe i. If the designated use of the floe fields requires more complex
shapes than the circular ones presented, the pose must be described not only by the position
(xi

pos, x
i
pos), but also by the orientation and instead of optimizing only the positions, the poses

must be optimized.
Afterwards, the floe positions are optimized using a sequential quadratic programming (SQP)
algorithm to ensure that no overlapping between ice floes occurs and all floes are still within the
boundaries given by xfield and yfield. This procedure is depicted in Figure 1 and described by the
optimization problem

min
Xpos

f (Xpos) s.t. gi (Xpos) ≤ 0, i ∈ {1, 2, 3, 4, 5}



with the cost function

f (Xpos) =

∣∣∣∣∣min
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pos
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xj
pos
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pos,x
j
pos

))
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pos
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))∣∣∣∣∣ ∀i, j ∈ {1, 2, . . . ,mfloe}

with the Euclidean distances between the floes

dxi
pos,x

j
pos

= dist
(
xi
pos,x

j
pos

)
− (ri + rj) .

The cost function uses the distance from each floe to its closest neighbour and determines the
largest difference between these minimal distances. Minimizing the cost function leads to an
equalized distance for every floe to its closest neighbour and therefore amplifies the clustering
of ice floes initialized by the random placement.
The constraint of no overlapping of ice floes is described by

gij1 (Xpos, r) =

{
−dxi

pos,x
j
pos

i ̸= j

0 i = j

which ensures that the pairwise distance between two floes is at least the sum of their radii. To
keep all floes within the given field boundaries described by the four corner points (xmin, ymin),
(xmin, ymax), (xmax, ymin) and (xmax, ymax), the following constraints are applied:

g2 (Xpos) = xminImfloe,1 −Xx
pos

g3 (Xpos) = Xx
pos − xmaxImfloe,1

g4 (Xpos) = yminImfloe,1 −Xy
pos

g5 (Xpos) = Xy
pos − ymaxImfloe,1

where Imfloe,1 ∈ Rmfloe×1 describes the vector of ones.

METHOD EVALUATION
Figure 2 shows four exemplary floe fields generated with the same parameter set. Despite the
statistical characteristics of all fields being the same, their arrangements vary significantly. This
variation is the result of the randomized placement of the ice floes. Determining both, the in-
fluence of the parameters as well as a potential convergence of the similarity distribution, is the
objective of this section. The first helps to understand the importance of the different observa-
tion parameters and especially the sensitivity towards changes. The latter gives a guideline on
how many simulations should be run to represent the parameter space of the floe field.
The method presented above is evaluated based on the input sensitivity and precision by a
parameter study. Because the ice thickness value is not taken into account for the ice floe
placement, it is not regarded in the following study. Therefore, the varied parameters are the
average ice concentration c̄ice and the diameter distribution d%. The parameter sets used are
listed in Table 1. Every parameter set is applied n times. In addition, a convergence study is
conducted to estimate the influence of the number of floe fields as well as the convergence of
the similarity values.
To quantify the sensitivity and precision, the floe fields have to be compared against each other.
A method usually used to assess synthetic data generated for training of neuronal networks is
the cosine similarity, which works for large datasets of non-binary vectorized data. The floe
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Figure 2: Four different examples for a randomized floe field using the data from observation
set A as shown in Table 1.

fields generated in this work are also synthetic data in a 2D plane similar to artificial images.
Therefore, the cosine similarity is regarded as an appropriate tool to quantify the pairwise sim-
ilarities between a set of different floe fields.

Similarity quantification
First, the floe field needs to be described: Using a discretization grid of grid size agrid equals
the smallest floe diameter (2.5m in this exemplary ice parameter set), the ratio of ice cover is
computed per grid cell by

cxyice =
Axy

ice

Acell

(9)

with the ice area in the grid cell Axy
ice at position (x, y) and the total cell area Acell = agrid

2.
Using Equation (9), the ice field with k × l discretized grid cells can be described by the ice
concentration in every grid cell with

Cice =


c11ice c21ice · · · ck1ice
c12ice c22ice · · · ck2ice

...
... . . . ...

c1lice c2lice · · · cklice

 . (10)

To apply the cosine similarity on these floe field description, the concentration matrix Cice needs



to be vectorized by

cvecice =


c1ice
c2ice

...
ckice

 (11)

with ciice denoting the i-th column of Cice. The pairwise cosine similarity between n different
ice fields of the same parameter set is then calculated by

skl =
⟨cvecice,k, c

vec
ice,l⟩∣∣cvecice,k

∣∣ · ∣∣cvecice,l

∣∣ , k, l ∈ N0, k, l < n. (12)

Table 1: Exemplary ice observation data. The mean ice concentration c̄ice and the diameter dis-
tribution d% are varied, whereas the mean ice thickness h̄ice does not affect the ice distribution
and is therefore kept constant.

Key Concentration Thickness Diameter Distribution d% [%]
c̄ice [%] h̄ice [m] 2.5m 7.5m 15m

A 50 0.5 20 40 40
B 70 0.5 20 40 40
C 50 0.5 40 30 30
D 70 0.5 40 30 30

Convergence study
To estimate the required number of floe fields to represent the possible floe field configurations
described by one parameter set, a convergence study regarding the variance between the floe
fields on the same parameter set is conducted. The cosine similarities are computed for varying
numbers of floe fields based on the parameter set D from Table 1. The resulting distributions
are shown in Figure 3. The standard deviation of the similarity is interpreted as a dimension of
the variability of the similarities of the different floe field arrangements. The lower the standard
deviation, the lower is the variability of the similarities and therefore the more potential floe
field arrangements are represented in the set. The 99% confidence interval is used to measure
and contextualize the standard deviation and therefore the variability of the different floe field
arrangements. It is defined as [s̄− h, s̄+ h] with the mean value of all cosine similarities

s̄ =
2

n(n+ 1)

n∑
k=1

n∑
l=k+1

skl (13)

and the margin of the error

h = SE · t∗. (14)

The standard error of the mean is

SE =
σ√
2

n(n+1)

(15)



Figure 3: Violin plot of the different cosine similarities for a varying number of generated fields
for parameter set D.

with the sample standard deviation

σ =

√√√√ 2

n(n+ 1)

n∑
k=1

n∑
l=k+1

(skl − s̄)2 (16)

and the critical t-value of the Student’s distribution is

t∗ = t 1.99
2

,n−1. (17)

The confidence intervals are listed in Table 2. For 200 simulated fields, 99% of the cosine sim-
ilarity values are lying within ±0.075% around the mean value, which correlates with a low
standard variation and therefore a high representation of possible floe fields. The spreading
can be halved by doubling the number of floe fields. Even though a narrower confidence in-
terval provides a more accurate result, especially when evaluating the floe fields as input in a
Monte-Carlo simulation, the relation between computational time and accuracy of the results is
expected to be the best between 200 and 400 simulations.

Parameter Study
The floe field generation and the subsequent accuracy estimation is done for different sets of
exemplary ice observation data sets as shown in Table 1.
The object of this parameter study is to estimate the influence of the ice concentration and the
diameter distribution on the precision. The cosine similarity is interpreted as a value for the
precision of the different floe fields. The exact positions of the ice floes in the real scenario
are unknown. Hence, no statement about the actual accuracy of the method can me made.
Assuming that the ice observation protocol represents the real ice floe field properly, the real
floe field is within the range of the synthetic floe fields. This leads to the conclusion that the
accuracy is at least as good as the precision and the precision can be taken as an upper bound



Table 2: Confidence intervals [s̄ − h, s̄ + h] of the cosine similarity for different number of
fields. s̄ is the mean value of the cosine similarity and h% = h/s̄.

Number of fields s̄ h h%

10 0.7273 1.21 · 10−2 1.664%
50 0.7268 2.10 · 10−3 0.289%

100 0.7278 1.09 · 10−3 0.150%
200 0.7275 5.47 · 10−4 0.075%
400 0.7263 2.79 · 10−4 0.038%
600 0.7263 1.85 · 10−4 0.025%

(a) upper right: A, s̄ = 52.6%, lower left: B, s̄ =
70.9%.

(b) upper right: C, s̄ = 52.9%, lower left: D, s̄ =
71.8%.

Figure 4: Cosine similarity of the generated ice floe fields for the four parameter sets in Table 1.

for the accuracy. If the floe field generation method presented above should be used to copy the
real floe field by a synthetic one, the precision between all fields should be as close as possible.
This would then conclude that all synthetic floe fields are an accurate representation of the real
floe field. If, on the other hand, the synthetic floe fields should represent arbitrary areas of e.g.
the marginal ice zone without the need of direct comparison to full scale data, the precision
should be as wide as possible, to represent a wide range of possible floe field constellations.
The mean similarity values and the corresponding standard deviations are listed in Table 3.
Figure 4 shows the cosine similarities for all four data sets graphically. The parameter sets A
and B as well as C and D have the same diameter distribution, whereas the sets A and C as well
as B and D have the same mean ice concentration. It can be seen that the influence of the actual
diameter distribution is of a significant smaller influence on the similarity of the different ice
fields than the ice concentration. This leads to the expected conclusion that the more ice floes
in a given field, the higher the probability that two floes in two different fields are partly or fully
overlapping.

DISCUSSION
Using the ice floe fields produced by the presented method as input to an icebreaking simulation,



a wide range of field setups can be covered. This is an advantage when a simulation should be
applied on a general ice scenario of differently scattered ice floes, e.g. in the marginal ice zone.
In this case, many ice fields can be created and used as simulation input into a Monte Carlo
simulation, as done in (Sapp, 2023).
If, on the other hand, the simulation should be applied on one specific ice condition to compare
the simulated data to full scale measurement data directly, the wide scattering of the different
ice floe fields is a disadvantage and leads to significant deviations of the simulation results. In
this case, the scattering should be reduced as much as possible. To obtain a more accurate ice
field modelling, the ice condition observation must be improved. One option is to capture the
size and position of every single floe. This can be done by visual airborne images, with a fixed
camera at the ship as presented by Sandru et al. (2020) and Panchi et al. (2021) or by evaluating
ice radar data. Based on more detailed ice observation data, the method proposed can be applied
not only on circular shapes, but also on any other shape.
Another option is the optimization of observation-based ice documentation: Instead of docu-
menting the whole ice field as once, it can be divided in several sub-fields. Every sub-field
is then described separately and especially the ice concentration should be observed in higher
detail. The latter option is described and evaluated in the following section.

Table 3: Statistical key parameters describing the similarity between different floe fields for
each parameter set listed in Table 1.

Key Mean similarity Standard deviation

A 52.6% 5.95%
B 70.9% 7.36%
C 52.9% 5.94%
D 71.8% 7.45%

Improved model
Instead of one global ice field characteristics, the field is divided into multiple sub-fields with
its own characteristics each. This respects local differences in the ice field such as channels of
almost open water as well as more dense areas. As described above, the influence of the actual
diameter distribution on the scattering is neglectable in comparison to the influence of the ice
concentration. Therefore, only the concentration is varied in the different sub-fields whereas
the diameter distribution is kept constant over the whole field. The field is divided into nine
different zones arranged as a three times three grid. The diameter distribution is the same as in
the parameter set D. The concentration values are80 85 80

45 50 50
85 80 75

 (18)

with the mean ice concentration equal to the mean ice concentration of parameter set D. This
new parameter set for the divided floe field is called D’.
The exact values for the mean similarity and the standard deviation are listed in Table 4. Com-
paring the multi-zone floe fields with the corresponding single-zone floe fields shows a minor
improvement of the similarity and therefore the precision. Nevertheless, this improvement is
below 1% regarding the mean similarity value. Figure 5 shows all similarity values for both



Table 4: Statistical key parameters describing the similarity between the single-zone floe field
with parameters D and the multi-zone floe field with specified concentration values.

Key Mean similarity Standard deviation

D 71.8% 7.45%
D’ 72.4% 7.46%

Figure 5: upper right: D’, s̄ = 72.4%, lower left: D, s̄ = 71.8%

configurations. Since the improvement of the precision is as small, the ice observation of smaller
grid cells is not worth the higher observation work.

CONCLUSION
The proposed method creates ice floe fields based on the ice observation parameters ice con-
centration, ice thickness and the diameter distribution within the floe field. The floes are placed
randomly in a predefined area to match the given concentration and diameter distributions. This
placement allows to create a huge variability of floe fields, which can then be used as input into
a Monte-Carlo simulation. The proposed method is not able to represent one specific ice field
pattern, but the general ice field characteristics. Therefore, using the floe fields generated by
this method on full-scale data is limited to distribution comparisons (such as spectra) rather than
direct measurement signal comparisons. For the latter, direct floe monitoring either by optical
data or by radar observation is preferred.
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