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ABSTRACT 

The complexity and uncertainty of sea ice distribution pose significant challenges for vessel 

navigation in ice-covered regions. This paper proposes a path planning method specifically 

designed for low ice concentration areas. By utilizing high-resolution sea ice images captured 

by the icebreaker Xue Long 2, a navigation environment for ice-covered waters is established. 

Combined with the Xue Long 2 ship maneuvering model, a two-layer path planning model is 

developed. The model integrates the Hybrid A* algorithm with optimal control theory and 

employs a neural network surrogate model to replace the traditional direct collocation method, 

mitigating the computational burden of excessive optimization variables. Case studies 

conducted under varying sea ice concentration scenarios demonstrate the method’s 

effectiveness in identifying optimal paths through ice channels, confirming its strong 

applicability. 
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1 INTRODUCTION 

With global climate change, the extent of sea ice in the Arctic region has been gradually 

decreasing, leading to improved navigational conditions and further development of 

economic activities and resource exploitation in the region (Stephenson et al., 2018). Polar 

shipping and scientific exploration have gained significant attention (Beveridge et al., 2016). 

Compared to traditional routes through the Suez Canal, the Arctic Northeast Passage shortens 

the shipping distance between the Far East and Europe by 30-40% (Lasserre and Pelletier, 

2011), and virtually eliminates the risk of piracy. However, due to the unique geographical 

location and environmental conditions of the Arctic, accidents occurring along the Northeast 

Passage will have more severe consequences and be harder to respond to in a timely manner 
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than those on traditional routes. Unlike path planning in open waters, route planning in ice-

covered regions requires consideration of the impacts of ice conditions on the vessel 

(Pastusiak, 2016), as the presence of sea ice significantly affects the safety of vessel 

navigation (Fu et al., 2016). Therefore, utilizing reliable sea ice information for path planning 

is a key issue for safe navigation in ice-covered regions. 

To date, most studies on ship path planning in ice-covered regions have relied on low-

resolution satellite images, weather forecasting data, sea ice model forecasts, and ice charts. 

Recent advancements have introduced local sea ice path planning algorithms utilizing real-

ship radar data (Berglund, Kotovirta, and Seinä, 2007; Lin et al., 2021). Existing path 

planning models for ships in ice-covered areas primarily focus on the development and 

integration of three modules: sea ice models, ship navigation models, and optimization 

algorithms (Li, Ringsberg, and Rita, 2019; Zhang et al., 2019; Chen et al., 2020; Lee, Roh, 

and Kim, 2021; Mishra et al., 2021; Zvyagina and Zvyagin, 2022; Wu et al., 2022). As 

vessels move towards automation, more sensors are being installed on ships, enhancing their 

perception capabilities (Wróbel, Montewka, and Kujala, 2018). Lin et al. (2021) developed a 

near-field route planner based on ship radar images, which can dynamically and accurately 

update the route based on sea ice conditions. Currently, most research on path planning in 

ice-covered regions focuses on global route planning at the satellite remote sensing scale, 

with little attention given to local path planning at the vessel scale. 

In ice-covered regions, commercial vessels typically have low or no ice class and primarily 

navigate in areas with lower sea ice concentration (Heikkilä et al., 2024). Collisions with sea 

ice may lead to both speed reduction and potential hull damage, prompting commercial 

vessels to avoid ice floes whenever possible. Conventional path planning methods and global 

planning approaches in ice-covered regions are not suitable for local path planning in these 

areas. To address the problem of path selection for vessels navigating in low sea ice 

concentration regions, this paper proposes a two-layer path planning model based on images 

captured by onboard cameras. The Hybrid A* algorithm is used to determine the shorter path 

in terms of navigation time, and the path obtained from the Hybrid A* algorithm is used as 

the initial solution for an optimal control problem. The optimal control method is then 

applied to generate an optimized path that satisfies the vessel's kinematic constraints. 

2 METHODOLOGY 

2.1 Research Framework 

The proposed path planning model framework is shown in Figure 1. High-resolution sea ice 

images are obtained from the sensors onboard the icebreaker Xue Long 2, and an image 

correction algorithm (Lu and Li, 2010) is applied to recover approximate dimensions of the 

sea ice. The corrected images are then processed using a deep learning model (Zhang et al., 

2022) to identify the distribution of sea water and ice, yielding an array of sea ice positions 

used for path planning. To ensure that the generated path effectively avoids potential 

hazardous sea ice and meets the vessel's maneuverability constraints, the ship's maneuvering 

model is incorporated into the path planning process. Based on this, a two-layer path planner 

combining the Hybrid A* algorithm with optimal control theory is designed, and a neural 

network surrogate model is employed to replace the direct collocation method for handling 

vessel motion constraints, thereby extending the applicability of the established path planning 

approach. 
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Figure 1. Path Planning Process in Low Ice Concentration 

2.2 Xue Long 2 Maneuvering Model 

Due to the highly complex navigation environment in the Arctic region, the shape and 

distribution of sea ice around the ship's hull are fraught with uncertainty. When planning 

paths, it is essential to fully consider the dynamic constraints of the vessel to prevent 

difficulties in tracking the planned path, which could lead to ship-ice collisions causing 

structural damage or entrapping the ship in ice. Therefore, this study incorporates the MMG 

(Mathematical Modeling Group) ship maneuvering equations as state constraints in both the 

Hybrid A* algorithm planning phase and the optimal control problem. 

Based on the MMG modular modeling approach, the hull, propeller, and rudder of the Xue 

Long 2 are considered separately to establish a three-degree-of-freedom (3-DOF) motion 

equation system for the vessel. To clearly represent the ship's motion dynamics, this study 

employs the following inertial and body-fixed coordinate systems to describe the ship's 

movement, as illustrated in Figure 2. 
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Figure 2. Inertial Reference Frame and Body-Fixed Reference Frame for Ship Motion State 

The state vector of the vessel is defined as, x = [ηT vT]T, where η = [x y φ]T, and v = [u v r]T. 

Here, x and y represent the eastward and northward position coordinates of the ship relative to 

a certain point in the inertial coordinate system, and φ denotes the heading angle of the hull 

relative to the true north direction. u, v, and r represent the surge velocity, sway velocity, and 

yaw rate, respectively, in the body-fixed coordinate system. In the body-fixed coordinate 



system, the hull is primarily subjected to inertial hydrodynamic forces, viscous hydrodynamic 

forces, propeller thrust, and rudder forces. The inertial hydrodynamic forces can be modeled 

as the added mass and added moment of inertia effects of the hull. Consequently, the MMG 

equations established in the aforementioned coordinate system are as follows: 

x y H P R

y x H P R

H P R

( ) ( )

( ) ( )

( )

cos sin

cos sin

zz zz

m m u m m rv X X X X

m m v m m ru Y Y Y Y

I J r N N N N

x u v

y v u

r

 

 



 + − + = = + +


+ + + = = + +
 + = = + +


= −
 = +


=





          (1) 

where m denotes the hull's mass, Izz denotes the hull's moment of inertia, and mx, my, and Jzz 

correspond to the longitudinal added mass, lateral added mass, and added moment of inertia 

of the hull, respectively. ΣX, ΣY, and ΣN represent the longitudinal external force, lateral 

external force, and yaw moment acting on the hull in the body-fixed coordinate system. The 

subscripts H, P, and R denote the viscous hydrodynamic force, propeller thrust, and rudder 

force, respectively. 

In this study, it is assumed that the Xue Long 2 operates at rated power continuously, with the 

ship speed determined by the hydrodynamic forces, rudder forces, and propeller thrust acting 

on the vessel (Sukas et al., 2019). 

2.3 First Stage Planner: Hybrid A* Algorithm 

The Hybrid A* (Dolgov et al., 2008) algorithm is an extension of the A* algorithm that 

incorporates the actual kinematic constraints of the object for path planning. The navigational 

environment model is constructed as a 2D grid with a resolution of 450m (15 pixels) per cell. 

The starting point is set at the vessel's photographed location, while the destination is defined 

as the nearest ice-free area within a 15-kilometer range directly ahead of the ship. The state 

variable xk = [ηk
T  vk

T]T, represents the state at the k-th discrete time step, where ηk denotes 

the position and orientation, and vk represents the velocity components. The control variable 

uk = [δk] represents the control input, specifically the rudder angle. The cost function 

associated with the state variable xk is defined as follows: 
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Where H(xi) represents the heuristic cost generated by the Dijkstra algorithm. The cost 

function incorporates three penalty coefficients where c1 represents the distance penalty term, 

c2 denotes the steering penalty term, and c3 weights the heuristic function. A larger c3 value 

accelerates the Hybrid A* algorithm's pathfinding process. This study sets c1=1.5, c2=1, and 

c3=5. 

The dynamic constraints acting on the vessel, xk+1 = f(xk,uk), are derived from the discretized 

ship maneuvering equations described in Section 2.2. In this study, motion primitives are 

generated by varying the rudder angle and limiting the change in the heading angle. To ensure 

continuity between motion primitives, i.e., vk = vk−1, the rudder is only actuated during the 

initial period of each motion primitive, while the rudder angle remains zero for the remaining 

time. As a result, the terminal state of each motion primitive only includes the surge velocity, 



which corresponds to the steady-state speed. The motion primitives used in this study are 

illustrated in Figure 3, where eleven action strategies are defined for both left and right rudder 

angles, as summarized in Table 1. The algorithm initiates from the starting state x₀ and 

propagates through state transitions via motion primitives. At each iteration, the cost function 

J(xₖ, uₖ) evaluates all feasible transitions, expanding the path with the minimal accumulated 

cost. 

 

Figure 3. Motion primitives under different steering strategies  

Table 1. Motion primitive parameters 

No. Rudder angle(°) Length（m） No. Rudder angle(°) Length（m） 

01 20 1024 07 -4 1024 

02 16 1023 08 -8 1022 

03 12 1023 09 -12 1022 

04 8 1021 10 -16 1023 

05 4 1025 11 -20 1021 

06 0 1022    

2.4 Second Stage Planner: Optimal Control 

The paths generated by the Hybrid A* algorithm are kinematically feasible. Using these 

Hybrid A*-generated paths as initial solutions significantly accelerates the solving speed of 

the optimal control problem. Given the complex shapes and distribution patterns of sea ice 

obstacles, this study employs a convex constraint generation method (Bitar et al., 2020) 

capable of handling arbitrarily shaped sea ice obstacles, which converts non-convex sea ice 

constraints into convex constraints to improve optimal control solution efficiency. 
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Figure 4. Convex Constraint Generation Pipeline for Sea Ice Obstacles  

The constraint generation process is illustrated in Figure 4. The convex polygon constraint 

generation algorithm proceeds iteratively for each waypoint pk = [xk yk]
T along the initial 

path: taking the initial path waypoint pk = [xk yk]
T as the center, we iteratively expand a circle 

until it intersects with the sea ice pixel at point pc,k,1. A tangent line is then constructed at pc,k,1, 

and the circle continues expanding until the next intersection with the sea ice pixel, where 

another tangent line is drawn. This process repeats until all tangent lines form a closed 

convex polygon. 

The path waypoints p are constrained within the generated convex regions through contact 

points pc. The ship's state constraints can be mathematically expressed as follows: 
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The discrete optimal control problem is described as follows: 
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The state constraint equation C(xk,uk,xk+1,uk+1)=0 represents the ship's dynamic equation 

(Equation 1). Due to the large-scale planning problem, directly using Hybrid A* path points 



as initial solutions would lead to excessive problem dimensionality. The proposed solution 

involves: 

1. Reducing the number of initial path points 

2. Increasing the time step between adjacent points 

With larger time steps, the direct collocation method becomes unsuitable. This study employs 

a neural network to approximate the ship's dynamic equations, enabling motion prediction at 

arbitrary time steps (network architecture shown in Figure 5). Given the previous state ηk, the 

subsequent state xk+1 depends solely on vk and uk, which serve as network inputs, with xk+1 

computed via Equation 5. 
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Figure 5. Neural Network Surrogate Model  

Training data is generated using the Xue Long 2 maneuvering equations established in 

Section 2.2, with the optimization problem ultimately solved using the Ipopt solver. 
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3 RESULTS AND DISCUSSION 

In this section, we apply the path planning model described in Section 2 to conduct case 

studies for sea ice scenarios with different sea ice concentrations (SIC). Note that these case 

studies are designed to demonstrate the model's performance in low-concentration ice regions. 



As the calibration of sea ice map parameters remains a subject for future research, 

uncalibrated sea ice map parameters were used in these case studies. 

This study selects sea ice images captured by the Xue Long 2 vessel as baseline scenarios. 

Three scenarios with ice concentrations of 7.5%, 20.6%, and 33% were selected (Figure 6). 

The planning domain covers a rectangular area of 21 km (east-west) × 15.9 km (north-south). 

The path planning model established in Section 2 was tested under these different scenarios. 

Smaller ice floes have been filtered out, meaning all sea ice shown on the map must be 

avoided by the vessel. 

As can be seen from Figure 6, the Hybrid A* algorithm is capable of finding collision-free 

paths that satisfy the ship's kinematic constraints in complex ice fields. However, since the 

algorithm searches in a discretized state space, the optimality of the generated paths cannot 

be guaranteed. Moreover, the algorithm involves numerous parameters, making it difficult to 

further improve path quality through parameter tuning. 
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Figure 6. Path Planning Results 

Table 2 presents the performance metrics of the path planning results. The mean heading 

change is obtained by calculating the average of absolute heading angle variations at each 

time step, reflecting the frequency of course adjustments, while the mean rudder angle 

represents the average of absolute rudder angles at each time step, characterizing the steering 

intensity. 

Table 2. Path Planning Performance Metrics 

Case 

Hybrid A* Algorithm Optimal Control Solver 

Length 

(m) 

Mean Heading 

Change(°) 

Mean Rudder  

Angle(°) 

Length 

(m) 

Mean Heading 

Change(°) 

Mean Rudder  

Angle(°) 

01 15000 0 0 15000 0 0 

02 19800 25.0 11.1 16255 1.9 4.8 

03 29700 27.0 10.4 21750 2.7 5.0 

For Case 1, the path obtained by the Hybrid A* algorithm is already optimal, as evidenced by 

the fact that no changes occurred after optimal control-based replanning. This demonstrates 

that the Hybrid A* algorithm can indeed find optimal paths under specific conditions. For 

other cases, the paths generated by the optimal control method are smoother and shorter 

compared to those from the Hybrid A* algorithm. 



The case studies prove that the proposed two-layer path planning model exhibits good 

applicability across scenarios with different sea ice concentrations. The developed 

hierarchical planning method can not only effectively handle complex low-concentration ice 

conditions but also enhance path planning safety while respecting the ship's actual 

maneuvering constraints. 

It should be noted that the current study focuses solely on low-concentration ice regions. 

Future work should incorporate ship-ice interaction mechanisms to improve the model's 

generalizability. 

4 CONCLUSIONS 

This paper proposes a two-layer path planning model based on Hybrid A* algorithm and 

optimal control theory to address ship path planning in low-concentration ice-covered waters. 

During the path optimization process, special attention is given to the dynamic constraints of 

the vessel. The research demonstrates that this model can integrate high-resolution ice image 

captured by onboard cameras with ship kinematic constraints to generate safe, smooth, and 

maneuverability-compliant optimized paths in various ice-covered environments. 

While the current path planning model has been numerically validated, its performance will 

be further evaluated in polar-like environments. Subsequent development will integrate ship-

ice interaction modeling to address icebreaking navigation in high-density ice conditions. 
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