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ABSTRACT  

The virtual sensor is a digital twin use case with the potential to inform operational and tactical 

decision-making towards increased vessel safety, passenger comfort and sustainable 

operations.  A polar vessel, instrumented with accelerometers and strain gauges, suffers 

accelerated fatigue due to the resonant excitation of the hull structure from wave slamming.  A 

transmissibility-based transfer function matrix is computed using the Operational Transfer Path 

Analysis method.  Structural acceleration data from ice operations in the Antarctic marginal ice 

zone (MIZ) serve as the input degrees of freedom.  The structural strain near midship is 

predicted from the global structural vibration and validated.   

This work is the first step towards enabling virtual strain measurement on a vessel that suffers 

a high probability of impulsive slamming loads, stemming from the hydrodynamic interaction 

between the ocean and ice rated hull geometry.  The transmissibility relationship unlocks the 

potential to estimate the midship strain response in the absence of a strain sensor.  As a result, 

the strain history of a vessel could be predicted based on historical structural accelerometer 

data.  Virtual strain enables the progression of a structural digital twin by including the 

accumulated high-frequency fatigue from ice-induced vibration into an analysis of actually 

accrued hull fatigue.  Consequently, this virtual sensor could provide ship owners with valuable 

information and tools to manage accumulated high-frequency hull fatigue effectively and 

inform decision-making to increase remaining useful life. 

KEY WORDS: Operational Transfer Path Analysis; Virtual Sensor; Structural Digital Twin; 

Polar vessel 

INTRODUCTION 

Digital twin technology promises to propel data-based decision-making for maritime 

operations and vessel design into a new frontier.  A digital twin is a virtual representation of a 

physical asset that conveys information regarding the asset operation, performance, health and 

environment within a sufficient time horizon to deliver decision support (Erikstad, 2017; 

Fonseca & Gaspar, 2021).  The advantage a digital twin presents to industry is enabled by data-

driven insights for operational decision support.  This can manifest in several applications, 

including structural health monitoring and predictive maintenance (Madusanka, et al., 2023). 

Narrowing the focus of the digital twin to the hull structure of polar vessel may yield insight 

into the operational loading conditions and stress peaks over time.  Consequently, it raises 
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questions such as estimating accumulated structural fatigue and its effect on the remaining 

useful life of a vessel – factors that are important for owners and investors from the return on 

investment perspective.  Although direct strain measurement may be the ideal method to 

monitor stress cycles, the installation and maintenance of strain gauges require significant 

effort in the long term.  Strain gauge installation and maintenance is a labour-intensive process 

and sensitive to installation errors (Hoffmann, 1989). The installation of strain sensors require 

adhesion at a precise orientation potentially performed in areas which do not support the 

ergonomics of test technicians. This is especially true for retrofit sensor installations. 

In contrast, accelerometers are much lower effort to install especially with regards to sensor 

adhesion and orientation.  Furthermore, acceleration responses at higher frequencies have 

higher (more measurable) response amplitudes if compared to deflection.  Acceleration 

measurements potentially offer a greater signal-to-noise ratio and enhanced measurement 

resolution.  The main disadvantage is that relationship between structural strain and structural 

acceleration is more obscure. 

Virtual measurement is a methodology under the digital twin umbrella that may provide a 

means to address this problem.  The operational use of hull measurements in combination with 

digital models enables virtual strain sensing to predict key performance indicators when direct 

measurement is prohibitively difficult or expensive to implement.  In essence, a virtual sensor 

utilizes data from physical sensors in conjunction with some form of system model to predict 

a parameter of interest (Tarpø, 2020).  

In the case of a structural digital twin the direct measurement of the hull strain over the life 

cycle of a vessel, or retrofitting strain sensors on an existing vessel, may be difficult and 

expensive to implement in the long term.  Alternatively, virtual sensors can transform the 

measurements from a network of accelerometers located all over the structure into a predicted 

strain response at another location without the long-term installation and maintenance of strain 

sensors.  Accelerometers are installed with relatively less effort and the strain is estimated with 

a computational model. 

The aim of this paper is to demonstrate the transmissibility relationship between structural 

acceleration and strain and how it can be utilized as a virtual strain sensor for a ship with an 

ice-going hull design during ice navigation.  The methodology for the transmissibility-based 

model is grounded in Transfer Path Analysis (TPA), which has the capability of synthesizing a 

transfer function model from operational measurements for a set of input and output degrees 

of freedom (DOF) (van der Seijs, et al., 2015).  TPA is mainly adopted by the automotive 

industry to address noise, vibration and harshness problems in the frequency domain (van der 

Seijs, et al., 2015; de Klerk & Ossipov, 2010).  Therefore, literature on the application of TPA 

in other sectors, such as shipping, is limited.  The contribution from this study is the novel 

application of TPA to facilitate virtual strain sensing in the maritime context. 

This work presents a case study on a Polar Supply and Research Vessel (PSRV).  First, the full-

scale measurement infrastructure onboard the PSRV is presented.  Next, a brief theoretical 

overview of TPA and its mathematical formulation is discussed.  The model is applied to 

operational data recorded during ice navigation on a scientific voyage to the Antarctic marginal 

ice zone (MIZ).  Finally, the results are validated against a secondary data set and discussed. 

METHODOLOGY 

Measurement infrastructure 

The hull monitoring system consists of a network of accelerometers attached throughout the 



hull structure of the PSRV.  The global rigid body and resonant vibration modes are measured 

while at sea and during ice-navigation.  The vessel regularly sails between Cape Town and 

Antarctica and serves as a unique case study for research in system identification and the 

application of operational modal analysis (OMA) (van Zijl, et al., 2021), human exposure to 

full-body vibration (Omer & Bekker, 2018) and hull fatigue (Pferdekämper & Bekker, 2024). 

 

Figure 1:  Sensor locations on the PSRV.  Adapted from STX Finland (STX Finland, 2012). 

A diagram showing the measurement locations is presented in Figure 1.  A network of 

26 integrated electronic piezo-electric (IEPE) accelerometers are placed throughout the 

structure to measure the global vibration response.  Strain gauge sensors are installed near 

midship at frame 98 on both the port and starboard sides.  This location is selected due to the 

significant change in the transverse cross-section where it is believed that high bending stresses 

are present.  This claim is substantiated in literature where visible cracks were reported near 

frame 98 (Pferdekämper & Bekker, 2024).  Data from the strain sensors are utilized in two 

ways.  Firstly, it is a critical initial parameter to synthesize the virtual sensor.  Secondly, it 

serves as a verification of the virtual sensor’s performance. 

The ship has a Polar Class 5 ice class notation, an overall length between perpendiculars of 

121 m and is powered by two 4 500 kW electric motors.  This enables the vessel to pass through 

1 m thick ice at a speed of 5 knots (SANAP, n.d.).  All measurement channels are sampled at 

2048 Hz. 

 

Theoretical overview of TPA 

TPA is an experimental technique typically associated with noise, vibration and harshness 

problems in the automotive industry.  Various TPA methodologies are reported in literature and 

are normally grouped into three categories, i.e. classical TPA, component-based TPA, and 

transmissibility-based TPA (van der Seijs, et al., 2015). 

Classical and component-based TPA relies on the measured frequency response functions 

(FRF) of a structure or component to synthesize a model between a set of input and output 

DOF.  Explicit knowledge of the input forces yields comprehensive information about the 

dynamic behaviour of the structure (van der Seijs, et al., 2015).  The input forces are typically 

measured with specialized equipment such as modal shakers or modal hammers.  Despite this, 

on the scale of a typical icebreaking ship it is generally not feasible to apply controlled forces 

of adequate magnitude to perform a reliable experimental modal analysis (EMA) to measure 



the FRF’s.  Similarly, in the general case of ice navigation, knowledge of the force interaction 

between the hull structure and ice is complex to describe, with modern methods relying heavily 

on simulation (Tuhkuri & Polojärvi, 2018; Paavilainen & Tuhkuri, 2013; Gong, et al., 2023). 

Transmissibility-based TPA, otherwise referred to as Operational Transfer Path Analysis 

(OTPA), differs from the former two methods.  OTPA aims to determine the path relationship 

between a set of input and output channels without the determination of FRF’s.  Instead, the 

path relationships are described by a transfer function, known as a transmissibility matrix, 

between the measured input and output DOF (van der Seijs, et al., 2015; de Klerk & Ossipov, 

2010).  This makes OTPA an appropriate technique to apply in an operational environment by 

essentially avoiding the direct force measurement of the complex ice-structure interaction.  

Specifically, the computed transmissibility matrix serves as the virtual sensor that relates the 

measured structural acceleration response to a predicted strain response at a specific location. 

 

OTPA formulation with singular value decomposition 

The OTPA algorithm is a signal processing method that utilizes singular value decomposition 

(SVD) and cross-talk cancellation (CTC) to find a linearized transfer function matrix between 

a set of input and output parameters (de Klerk & Ossipov, 2010).  Consider a linear model of a 

multiple DOF system.  In the frequency domain, the system can be described as  

 

 𝑯(𝑗𝜔)𝒙(𝑗𝜔) = 𝒚(𝑗𝜔) (1) 

where the output vector, 𝒚(𝑗𝜔), is modelled as the product of the transfer function matrix, 

𝑯(𝑗𝜔), and the input vector, 𝒙(𝑗𝜔).  The size of the input and output vectors, 𝒙 and 𝒚, are 

determined by the number of measurement channels included in the measurement.  The 

measurement channels are analogous to the number of input and output DOF. 

The input and output vectors can represent any realistic physical quantity related to the DOF 

of the model, such as motions, 𝒖(𝑗𝜔), forces, 𝒇(𝑗𝜔), or strain, 𝜺(𝑗𝜔).  Note the dependency 

on frequency with the symbols 𝑗𝜔 and the use of complex numbers.  This requires that time-

based measurements are transformed to the frequency domain with the Fourier transform 

before constructing the associated input and output vectors.  The symbols 𝑗𝜔 are omitted from 

this point for clarity.  Now, the input and output vectors are constructed as 

 

 

𝒙 = [

𝒖𝑥

𝒇𝑥

𝜺𝑥

] ;        𝒚 = [

𝒖𝑦

𝒇𝑦

𝜺𝑦

] 

(2) 

It is up to the engineer to define the input and output vectors from the measured data.  In the 

specific case presented in this paper, the input vector is constructed from measured acceleration 

and output vectors from the strain measurements at frame 98.  The input and output vectors are 

expanded as shown in Equation (3).  The indices, 𝑚 and 𝑛, refer to the number of channels 

associated with the input or output measurements respectively. 

 

 
𝒖𝑥 = [𝑢𝑥

(1)
, … , 𝑢𝑥

(𝑚)
]

𝑇

;       𝜺𝑦 = [𝜀𝑦
(1)

, … , 𝜀𝑦
(𝑛)

]
𝑇

 
(3) 



 

From the construction of Equation (1), the elements of the transfer function matrix 𝑯 takes the 

form (de Klerk & Ossipov, 2010) 

 

 
𝐻𝑖𝑗 =

𝑦𝑖

𝑥𝑗
|

𝑥𝑘=0

;    𝑘 ≠ 𝑗 
(4) 

In an ideal scenario, the element-wise determination of 𝑯 is normally performed using EMA 

where an external force is applied, 𝑥𝑗, at a single DOF while the forces at all other DOF are 

suppressed.  In the laboratory, this force can be generated with a shaker or modal hammer.  

However, this is an impossible experimental setup in the operational environment of an 

icebreaking vessel where the input vector, 𝒙, consists of the global vibration response of the 

structure.  With OTPA this drawback is overcome by attempting to measure the transfer 

function matrix elements all at once (de Klerk & Ossipov, 2010).  First, the transpose of 

Equation (1) is taken and expended element-wise as 

 

 
[𝑥(1), … , 𝑥(𝑚)] [

𝐻11 … 𝐻1𝑛

⋮ ⋱ ⋮
𝐻𝑚1 … 𝐻𝑚𝑛

] = [𝑦(1), … , 𝑦(𝑛)] 
(5) 

Here, the number of input and output channels are denoted by the parameters 𝑚 and 

𝑛 respectively.  This operation on its own does not allow the direct computation of the transfer 

function matrix elements.  Instead, Equation (5) is expanded to include several measurement 

blocks with no overlapping content. For example, in the maritime context, a 30-minute 

measurement can be cut into a number of smaller blocks.  The random and impulsive nature of 

ice-structure interaction means that the time-domain structural response will be different for 

each measurement block.  Assuming the relationship between the input and output parameters 

remains linear throughout the whole measurement, then the transfer function described in 

Equation (5) should be true for each measurement block 𝑟 as 
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𝑥1
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(1)
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(𝑚)
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(𝑛)

⋮ ⋱ ⋮

𝑦𝑟
(1)

… 𝑦𝑟
(𝑛)

] − 𝜇 

(6) 

With this formulation the model requires the elements of the transfer function to be linearly 

independent and makes Equation (6) a solvable least-squares optimization problem.  The 

additional residual 𝜇 contains the content that cannot be modelled by the selected input DOF.  

Next, a compact form of Equation (5) is presented as 

 

 𝑿𝑯 +  𝜇 = 𝒀 (7) 

Equation (7) is solved for each frequency line in the FFT spectrum.  This is accomplished by 

pre-multiplying with 𝑿𝑇 and ensuring that the residual vector is in the null space of the input 

DOF, meaning that 𝑿𝑇𝜇 = 𝟎.  This results in the transfer function taking the form of 

 



 𝑯 = (𝑿𝑇𝑿)−𝟏𝑿𝑇𝒀 = 𝑿+𝒀 (8) 

The next step entails the expression of the input vector 𝑿 in terms of a SVD to prevent poor 

estimates and minimise the effects of measurement noise on the prediction. 

 

 𝑿 = 𝑼𝚺𝑽𝑇 (9) 

Here, 𝑼 is a 𝑟 × 𝑟 unitary matrix, 𝚺 is a 𝑟 × 𝑚 matrix with positive numbers on the diagonal 

and zeros off the diagonal.  𝑽𝑇 is the conjugate transpose of 𝑽 which is a 𝑚 × 𝑚 unitary matrix.  

This allows for the expression of the pseudo-inverse matrix 𝑿+ as 

 

 𝑿+ = 𝑽𝚺−1𝑼𝑇 (10) 

Finally, by substituting Equation (10) into Equation (8) yields the transfer function matrix 𝑯̃ 

as 

 

 𝑯̃ = 𝑽𝚺−1𝑼𝑇𝒀 (11) 

Consequently, with the newly obtained transfer function matrix it is possible to predict the 

output DOF with new a new input data set. 

 

 𝒀̂ = 𝑿𝑛𝑒𝑤𝑯̃ (12) 

In the context of this paper, the predicted output vector is the strain response, while the input 

vector is populated with acceleration channels measured for the hull structure. 

RESULTS 

Scientific voyage, ice conditions and datasets 

Measurements were conducted during a scientific voyage in the Southern Ocean between Cape 

Town and the Antarctic MIZ during the winter of 2022.  The route of the ship is shown in 

Figure 2 with the ship encountering and navigating sea ice from latitudes 58°S and higher for 

a period of six consecutive days. 

 

Figure 2:  Route of the PSRV from Cape Town to the Antarctic MIZ (11-31 July 2022). 



The ice conditions that were encountered consisted mostly of newly formed level sea ice and 

fields of pancake ice.  Researchers onboard the vessel conducted visual ice observations from 

the bridge during all hours while the ship was in motion.  Estimates of the ice concentration, 

floe thickness and floe diameter were recorded every minute in accordance with the methods 

described in (Bekker, et al., 2017).  Table 1 lists the ice conditions associated with three datasets 

used to compute and validate the model.  The transfer function model was synthesized with the 

training set and validated with validation set 1 and validation set 2.  Validation set 1 was 

measured during similar operational conditions as the training set, while validation set 2 was 

acquired at a higher speed and with thicker ice.  The length of all three data sets spanned a 

period of 30-minutes. 

The primary dataset was used to compute the transfer function matrix, as described by 

Equation (11).  The input vector, 𝑿, was populated with acceleration data from the 26 input 

channels from the training set.  Likewise, the output vector, 𝒀, was constructed from the two 

strain gauge channels located on the port and starboards sides at frame 98.  Therefore, the 

transfer function matrix, 𝑯̃, was computed for each frequency line as described in 

Equation (11).  Similarly, a new input vector, 𝑿𝑛𝑒𝑤, was constructed for each of the two 

validation sets.  The associated predicted strain, 𝒀̂, was then computed with Equation (12). 

After synthesizing the transfer function matrix, 𝑯̃, it essentially becomes a collection of 

frequency dependent transfer functions relating each input channel to each of the output 

channels.  In this case, 𝑯̃ contains 26 × 2 transfer functions (𝑚 × 𝑛).  The frequency plot of 

the transfer function between an accelerometer located in the bow and the port side strain gauge 

is shown in Figure 3.  It was assumed that the impulsive loads from ice impacts produces a 

broadband excitation.  Therefore, the number of measurement blocks for the OTPA 

computation was set to 𝑟 = 1. 

 

Table 1:  Ice conditions from visual observations for the training and validation data sets over 

a 30-minute window. 

 

Dataset 

 

Date 

 

Time (UTC) 

Ship 

speed 

(kn) 

Ice 

concentration 

(%) 

Floe 

thickness 

(cm) 

Estimated 

Floe diameter 

(m) 

Training set 20/07/2022 20:00-20:30 6.2 87.2 29.7 2497 

Validation set 1 20/07/2022 20:30–21:00 5.01 88.7 31.3 3491 

Validation set 2 22/07/2022 08:40-09:10 13.1 91 37.7 81.6 

 

 

Figure 3:  Frequency response of the transfer function relation between a bow accelerometer 

(input) and the port side strain gauge (output). 

 



Validation set 1 

In Figure 4 the set of graphs with the time and frequency response of the predicted strain for 

validation set 1 is presented.  The ice conditions for validation set 1 was similar to the original 

training data and evaluates the model’s performance under similar operating conditions.  Figure 

4 (a) shows the raw 30-minute strain prediction from the transfer function matrix with no 

additional signal processing.  A slight bias error is observed between the predicted and 

measured signals.  The lower limit of the frequency range for the installed accelerometers is 

0.5 Hz (PCB Piezotronics, 2009).  Therefore, a high-pass filter was applied to remove 

frequency content below 0.5 Hz.  As a result, the bias error was removed as shown in Figure 

4 (b) and (c).  The frequency response, Figure 4 (d), was calculated with the FFT algorithm 

(0% overlap, uniform window, block size = 921 600).  It is observed that the frequency content 

of the predicted strain matches the measured peak values associated with the structure’s natural 

frequencies.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4: Validation set 1: time response with no filter (a), high-pass filter (b), close-up 

representation with high-pass filter (c) and FFT response of predicted strain (d) [0% overlap, 

uniform window, block size = 921 600]. 



Validation set 2 

In Figure 5 the set of graphs with the time and frequency response of the predicted strain for 

validation set 2 is presented.  The ice conditions for validation set 2 were different to the 

original training data in terms of the vessel’s speed, ice thickness and floe size, which evaluates 

the model’s performance under a change in operating conditions.  Figure 5 (a) shows the raw 

30-minute strain prediction from the transfer function matrix with no additional signal 

processing applied.  A larger bias error is observed between the predicted and measured signals 

compared to the initial estimates from validations set 1.   

 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5: Validation set 2: time response with no filter (a), high-pass filter (b), close-up 

representation with high-pass filter (c) and FFT response of predicted strain (d) [0% overlap, 

uniform window, block size = 921 600]. 

 



Again, a high-pass filter was applied to remove frequency content below 0.5 Hz.  Similar as 

before, the bias error was removed as shown in Figure 5 (b) and (c).  The frequency response, 

Figure 5 (d), was again calculated with the FFT algorithm (0% overlap, uniform window, block 

size = 921 600).  It is observed that the frequency content of the predicted strain matches the 

measured peak values associated with the structure’s natural frequencies. 

The quality and fit of the predictions were evaluated with the normalized root mean square 

error (NRMSE) metric.  The NRMSE compares the accuracy of the predictive model to the 

observed values, normalized by the range of the observed data.  Table 2 lists the NRMSE of 

both validation sets.  The smaller error for validation set 1 was expected due to the similar 

operational conditions to the training set.  Furthermore, a reduced NRMSE is observed after 

the high-pass filter was applied. 

Table 2: NRMSE for validation set 1 and 2 before and after filtering 

Dataset 𝑁𝑅𝑀𝑆𝐸𝑛𝑜 𝑓𝑖𝑙𝑡𝑒𝑟 (𝜇𝜀) 𝑁𝑅𝑀𝑆𝐸ℎ𝑖𝑔ℎ 𝑝𝑎𝑠𝑠 𝑓𝑖𝑙𝑡𝑒𝑟 (𝜇𝜀) 

Validation set 1 5.87 2.07 

Validation set 2 10.28 3.11 

 

DISCUSSION 

The comparisons between the estimated and predicted strain in Figure 4 and Figure 5 illustrate 

that the transmissibility-based transfer function model has potential.  Prior to any additional 

signal processing, the model predicted the strain response with reasonable accuracy for both 

validation data sets.  In addition, it was accordingly expected, and ultimately shown in the FFT, 

that the transfer function model accurately predicted the measured natural frequencies 

associated with the peak values of the FFT. 

Interestingly, the transfer function model initially produces a bias error when compared to the 

measured strain.  This suggests that the model may lack low frequency content.  In general, 

ocean waves that propagate through ice fields decrease in amplitude due to the scattering and 

dissipation of the wave energy (Squire, 2018), which may be a reason for the lack of low 

frequency excitation.  Equally important, the unknown loading condition of the vessel and the 

sensitivity of the IEPE accelerometers at low frequencies may play an additional role.  Further 

investigation is required to pinpoint to cause of the bias error. 

The result produced a filtered strain prediction that closely correlated to the filtered measured 

strain for both data sets.  This was highlighted by the low NMRSE in Table 2.  Since the ice 

conditions and speed of the PSRV was different between the validation data sets suggests that 

the transfer function model remain somewhat constant between the two operating conditions.  

However, this assumption remains to be tested in more extreme conditions.  Further validation 

is required for operations in general open water, or in established first year or multi-year ice 

fields. 

In conclusion, the value of the OTPA method is associated with the reconstruction of the strain 

response from the acceleration response alone.  Once the transfer function matrix, 𝑯̃, is 

synthesized then the need for long-term dynamic strain measurement theoretically becomes 

less important – assuming the model remains constant over time and over a range of operational 

conditions.  Nonetheless, despite the modelling potential illustrated in this paper, the 

methodology still requires further research and validation. 



CONCLUSION 

A novel virtual sensor methodology based on OTPA was presented with the aim of developing 

modelling strategies to enable a structural digital twin for an ice rated vessel.  An overview of 

OTPA and the formulation of the transmissibility-based transfer function model was discussed.  

Next, operational data from a PSRV during ice navigation in the Antarctic MIZ was employed 

to synthesize a transfer function matrix.  This matrix serves as the model that relates the 

structural acceleration (input) to a predicted strain (output) response. 

A validation study was performed to evaluate the performance of the transfer function model 

in two operational conditions during ice navigation.  The initial strain prediction showed a bias 

error, which was subsequently removed with a high-pass filter.  Consequently, the model 

accurately predicted the dynamic strain with low NRMSE values. 

Further investigation into the performance of the model in extreme operational conditions, 

involving open water passage, and navigation in established first year or multi-year ice fields, 

are required.  Nonetheless, the OTPA methodology shows modelling potential and could be 

utilized as a virtual strain sensor. 
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