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ABSTRACT 

There has been an increase in maritime traffic in arctic regions in recent years.  There is also 

data that shows that a large proportion of maritime incidents are related to failures of the 

propulsions system machinery.  It thus becomes important to monitor a ship’s propulsion 

system, especially under harsh conditions such as those expected when travelling through ice-

covered waters.  This work follows from research being conducted on the S.A. Agulhas II 

polar supply and research vessel.  Previous research investigated the development of models 

for estimating the ice-induced propeller moment using the torsional response of the propulsion 

shaft.  However, this propeller-ice contact would also cause bending loads on the propulsion 

shaft, which are necessary to quantify to understand their influence on the propulsion shaft 

bearings.  The research presented here seeks to lay groundwork for modelling the transverse 

vibrations of the propulsion shaft to estimate the input bending loads.  This forms part of a 

larger study to model and monitor the propulsion shaft of the S.A. Agulhas II, expanding the 

current capabilities to include the monitoring of transverse vibrations and estimations of 

transverse loads caused by propeller-ice interaction. 

KEY WORDS: Propeller-ice interaction; Propulsion shaft transverse vibrations; Numerical 

modelling; Inverse problem. 

 

INTRODUCTION  

The need for safe and efficient shipping in Arctic regions is increasing, due to expected 

increases in maritime transport in ice-covered seas. It has been shown that there has been an 

increasing trend in the number of incidents occurring in Arctic waters, with damage to or failure 

of the propulsion system accounting for most of these incidents (Nejad, et al., 2021). 

The propulsion systems of vessels travelling in icy waters are exposed to ice-related impact 

loading in addition to hydrodynamic loading. This additional loading affects the safety and 

efficiency of vessel operation. 

Structural failure of propulsion system components could occur due to either a loading 

condition exceeding the ultimate strength of the component, or due to a cyclic loading resulting 

in fatigue failure. Both these loading conditions are exacerbated during propeller-ice 
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interaction. This is due to increases in the maximum loading on the propeller blades during ice 

impacts. 

Some of the major components of the propulsion system are the bearings that support the 

propulsion shaft.  Part of the monitoring of these bearings would be to measure the loading 

conditions they are exposed to during operation. One way this can be done is by measuring the 

shaft response at one or more locations during operation, especially during propeller-ice contact.  

Then an inverse model can be used to estimate the forces that caused the response, as well as 

the response along the rest of the shaft. The estimated forces would include the transverse 

propeller loads and the total shaft response could be used to estimate the bearing loads.  

There has been previous research in measuring the propulsion shaft response due to propeller-

ice interaction.  These works mainly focus on the torsional and thrust vibrations of the shaft, 

for example the work done by Zambon, et al. (2022). Though there is research on the transverse 

vibrations of propulsion shafts, such as Zou, et al. (2024), there is little with regards to the 

transverse response due to propeller-ice interaction. 

Inverse models have previously been used to estimate ice-induced propeller loads (Browne, et 

al., 1998; Ikonen, et al., 2014; De Waal, et al., 2018; Polic, et al., 2019; Nickerson and Bekker, 

2021; Nickerson and Bekker, 2022). Of these investigations, only Browne, et al. (1998) and 

Nickerson and Bekker (2021) considered axial loads and responses, while the rest considered 

only torsional loads and responses. Again, there is little on the use of inverse models to estimate 

transverse propeller loading from the shaft response due to propeller-ice interaction. 

This paper presents the initial development of an inverse model of the propulsion shaft of the 

S.A. Agulhas II (SAA II) that can be used to estimate transverse loads on the propeller, and the 

associated bearing loads.  The model is based on similar principles to one developed by 

Nickerson and Bekker (2022) for estimation of torsional propeller loads. 

The aim is to be able to use this model with full-scale measured data from the SAA II propulsion 

shaft to estimate the propeller and bearing loads due to propeller-ice interaction. This work 

forms part of a larger study of ice going vessels, using the SAA II as a case study (Bekker, et 

al., 2019; Purcell, et al., 2024). Previously, the transverse propeller loads have been estimated 

based on the torque loads (Gilges, et al., 2024). This work seeks to provide another method to 

estimate these transverse loads. 

 

MODEL DEVELOPMENT 

A model of the SAA II port-side propulsion shaft has been developed. The port-side is chosen 

as this corresponds with the current measurement system on board the vessel. 

For the model, a single propulsion shaft is considered between the propeller and motor. The 

shaft is modelled as a beam with free boundary conditions. The external transverse propeller 

loads are included and each of the bearings capable of supporting radial loads are modelled as 

elastic supports. The layout for this shaft model is provided in Figure 1. There are three bearings 

mounted in an external stern-tube (1 – 3), one intermediate shaft bearing (4), and two bearings 

supporting the rotor (5 and 6).  

It is assumed that the vertical load due to ice impacting the propeller blade is significantly 

higher than the axial load. Hence the moment, Mprop, applied to the propeller is considered 

negligible. For simplicity, it is also assumed that the cross-section and material properties 

remain constant throughout the length of the shaft. 



 

 

Figure 1. Shaft model layout 

 

Forward model 

When used to solve the forward problem the input propeller loads would be known, and the 

shaft response would be unknown. The wave equation for the transverse vibrations of a beam 

is (Rao, 2007), 

 

𝐸𝐼
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 𝑓(𝑥, 𝑡) (1) 

 

where E is the elastic modulus, I is the cross-section area moment of inertia, ρ is the material 

density, A is the cross-section area and w(x,t) is the transverse displacement. The applied forces, 

f(x,t), are given by 

 

𝑓(𝑥, 𝑡) = −𝑉𝑝𝑟𝑜𝑝(𝑡)𝛿(𝑥 − 𝐿𝑝𝑟𝑜𝑝) −𝑊𝑔,𝑝𝑟𝑜𝑝(𝑡)𝛿(𝑥 − 𝐿𝑝𝑟𝑜𝑝)

− 𝑚𝑝𝑟𝑜𝑝𝑤̈(𝐿𝑝𝑟𝑜𝑝, 𝑡)𝛿(𝑥 − 𝐿𝑝𝑟𝑜𝑝) −∑𝑘𝑗𝑤(𝐿𝑗 , 𝑡)𝛿(𝑥 − 𝐿𝑗)

6

𝑗=1

 
(2) 

 

where Vprop is the transverse propeller load, Wg,prop and mprop are respectively the weight and 

mass of the propeller, and the k terms represent the bearing radial stiffnesses. The delta function, 

δ, is given by 

 

𝛿(𝑥 − 𝑎) = {
1, 𝑥 = 𝑎
0, 𝑥 ≠ 𝑎

 (3) 

 



The transverse displacement of the shaft can be represented using modal superposition, 

 

𝑤(𝑥, 𝑡) = ∑𝜑𝑛(𝑥)𝑞𝑛(𝑡)

𝑁

𝑛=1

 (4) 

 

where N is the number of mode shapes used to describe the displacement of the shaft, φn(x) are 

the mode shapes, and qn(t) are the corresponding modal coordinates as functions of time. The 

mode shapes and natural frequencies are described respectively by, 

 

𝜑𝑛(𝑥) = cosh(𝛽𝑛𝑥) + cos(𝛽𝑛𝑥) − 𝜎𝑛(sinh(𝛽𝑛𝑥) + sin(𝛽𝑛𝑥)) (5) 

 

𝜔𝑛(𝑥) = 𝛽𝑛
2√

𝐸𝐼

𝜌𝐴
 (6) 

 

The values for βn and σn depend on the boundary conditions and are provided by Inman (2014). 

Note that the rigid modes were not considered in the development of this model. The 

orthogonality condition for the modes can be expressed as (Rao, 2007), 

 

∫ 𝜑𝑛(𝑥)𝜑𝑚(𝑥)𝑑𝑥
𝐿

0

= {

0, 𝑛 ≠ 𝑚
1

𝜌𝐴
, 𝑛 = 𝑚

 (7) 

 

From the definition of the delta function, 

 

∫ 𝛿(𝑥 − 𝑎)𝜑𝑚(𝑥)𝑑𝑥
𝐿

0

= 𝜑𝑚(𝑎) (8) 

 

Equations 2 and 4 can be substituted into Equation 1 and the resulting equation multiplied by 

φm(x) and integrated over the length of the shaft, 



𝐸𝐼∑𝛽𝑛
4𝑞𝑛(𝑡)∫ 𝜑𝑛(𝑥)𝜑𝑚(𝑥)𝑑𝑥

𝐿

0

𝑁

𝑛=0

+ 𝜌𝐴∑ 𝑞̈𝑛(𝑡)∫ 𝜑𝑛(𝑥)𝜑𝑚(𝑥)𝑑𝑥
𝐿

0

𝑁

𝑛=0

= −(𝑉𝑝𝑟𝑜𝑝(𝑡) +𝑊𝑔,𝑝𝑟𝑜𝑝)∫ 𝛿(𝑥 − 𝐿𝑝𝑟𝑜𝑝)𝜑𝑚(𝑥)𝑑𝑥
𝐿

0

−𝑚𝑝𝑟𝑜𝑝𝑤̈(𝐿𝑝𝑟𝑜𝑝, 𝑡)∫ 𝛿(𝑥 − 𝐿𝑝𝑟𝑜𝑝)𝜑𝑚(𝑥)𝑑𝑥
𝐿

0

−∑𝑘𝑗𝑤(𝐿𝑗 , 𝑡)∫ 𝛿(𝑥 − 𝐿𝑗)𝜑𝑚(𝑥)𝑑𝑥
𝐿

0

6

𝑗=1

 

(9) 

 

Using Equations 4 and 6 – 8, Equation 9 can be simplified to one equation representing the 

equation of motion for each mode, Equation 10. 

 

𝑞̈𝑛(𝑡) + 𝑚𝑝𝑟𝑜𝑝𝜑𝑛(𝐿𝑝𝑟𝑜𝑝)∑𝜑𝑖(𝐿𝑝𝑟𝑜𝑝)𝑞̈𝑖(𝑡)

𝑁

𝑖=0

+ 𝜔𝑛
2𝑞𝑛(𝑡)

+∑𝑘𝑗𝜑𝑛(𝐿𝑗)∑𝜑𝑖(𝐿𝑗)𝑞𝑖(𝑡)

𝑁

𝑖=0

6

𝑗=1

= −(𝑉𝑝𝑟𝑜𝑝(𝑡) +𝑊𝑔,𝑝𝑟𝑜𝑝)𝜑𝑛(𝐿𝑝𝑟𝑜𝑝) 

(10) 

 

Equation 10 can then be written into matrix form, which facilitates solution using a numerical 

time integration scheme (Kadapa et al., 2017). In this case, the vector containing the qn 

variables would be the solution to the model. These variables can then be used with Equation 4 

to provide the response at any location along the length of the shaft. 

 

Inverse model 

While the forward model is useful when the input loads are known, this is often not the case 

for operational measurements. Often, the input loads are unknown, and some output response 

is known. In this case, for the inverse model Vprop(t) would be unknown. Thus, an additional 

equation would be necessary. This would come from a physical measurement of the system 

response for use as input in the inverse problem. For this model, the measured transverse 

displacement of the shaft at a given point is chosen, 

 

𝑤(𝑥𝑎, 𝑡) = ∑𝜑𝑛(𝑥𝑎)𝑞𝑛(𝑡)

𝑁

𝑛=1

 (11) 

 

where xa is the location at which the displacement is measured. This additional equation would 

be included in the matrix formulation, and the solution to the inverse problem would be the 

vector containing the qn variables as well Vprop(t). 

Measurement of the transverse displacement could be achieved using laser displacement 

sensors, or machine vision methods (Zou, et al., 2024). 



Estimating bearing loads 

Both the forward and inverse models could be used to infer the bearing loads. Once the qn 

variables have been solved for, the bearing forces can be estimated using modal superposition 

to determine the displacement at the bearing location and multiplying with the bearing stiffness. 

𝐹𝑗(𝑡) = 𝑘𝑗𝑤(𝐿𝑗 , 𝑡) = 𝑘𝑗 ∑𝜑𝑛(𝐿𝑗)𝑞𝑛(𝑡)

𝑁

𝑛=1

 (12) 

 

RESULTS AND DISCUSSION 

The model is simulated using the parameters provided in Table 1.  

 

Table 1. Model parameters (Rolls-Royce AB, 2010) 

Parameter Symbol Value 

Elastic modulus for steel 𝐸 207 GPa 

Density for steel 𝜌 7850 kg/m3 

Propeller mass 𝑀𝑝𝑟𝑜𝑝 13 427 kg 

Propeller location 𝐿𝑝𝑟𝑜𝑝 1.102 m 

Motor rotor mass 𝑀𝑟𝑜𝑡 11 300 kg 

Propeller location 𝐿𝑟𝑜𝑡 33.140 m 

Shaft outer diameter 𝑑𝑜 0.500 m 

Shaft inner diameter 𝑑𝑖 0.175 m 

Shaft length 𝐿 35.095 m 

Bearing stiffness 𝑘1 0.691 GN/m 

 𝑘2 0.576 GN/m 

 𝑘3 0.563 GN/m 

 𝑘4 0.590 GN/m 

 𝑘5 1.000 GN/m 

 𝑘6 1.000 GN/m 

Bearing locations 𝐿1 3.137 m 

 𝐿2 11.959 m 

 𝐿3 19.174 m 

 𝐿4 24.552 m 

 𝐿5 31.687 m 

 𝐿6 34.940 m 

 



The first three natural frequencies of the modelled shaft are compared to those provided in the 

design documentation of the SAA II (Rolls-Royce AB, 2010) and are provided in Table 2. 

 

Table 2. Comparison of natural frequencies 

 Model Rolls-Royce AB (2010) Error 

f1 10.3 Hz 11.1 Hz 7.2 % 

f2 17.1 Hz 20.9 Hz 18.2 % 

f3 24.0 Hz 27.0 Hz 11.1 % 

 

Though the frequencies are close, there are still significant errors with the results provided by 

the model. It may be that assumptions made during the development of the model need further 

investigation. 

For the shaft layout as presented in Figure 1, there would be an additional two rigid body modes. 

These were not considered in the development of the model; however, this should still be 

examined in further detail. 

The presented model development does not include any damping. This is included by 

modelling damping elements similar to how the spring elements are modelled. This results in 

an additional term in Equation 10, 

 

∑𝑐𝑗𝜑𝑛(𝐿𝑗)∑𝜑𝑖(𝐿𝑗)𝑞̇𝑖(𝑡)

𝑁

𝑖=1

6

𝑗=1

 (13) 

 

The damping coefficients for these elements need to be determined through experimental 

measurements. Furthermore, propeller damping due to interaction with water can be modelled 

using Schwanecke’s method (Bertram, 2012). 

The presented models only consider two-dimensional transverse vibrations, or displacement in 

a single plane. It is, however, expected that the shaft would bend in multiple planes as ice 

impacts could occur at any point during the propeller’s rotation. Thus, to properly model this, 

the three-dimensional transverse vibrations need to be considered. This can be achieved with 

the current model by simulating the shaft in two planes, the xy plane and the xz plane, and 

combining the results to get the transverse vibration response in three dimensions. 

For operational measurements, this would necessitate that the transverse vibrations are 

measured in two perpendicular directions. The displacement of the shaft can then be considered 

relative to these measurement directions. 

It should also be noted that one could easily consider the effect of additional masses on the 

transverse vibrations of the shaft. The weight of additional components, such as bearings, 

couplings, or the motor rotor, could be added to Equation 10 in a manner similar to the propeller 

weight. 

To show the functionality of the model, the forward problem is solved when the propeller is 

subjected to an impulsive load, Vprop(t), with a magnitude of 100 kN and duration of 0.04 



seconds. For this simulation, the masses of the propeller and motor rotor are included, and 

damping is modelled as described in Equation 13. The damping coefficients are chosen such 

that the response dies out in a reasonable time and are not necessarily representative of the 

actual damping in the system. Other parameters, such as the mass and bearing stiffnesses, are 

taken from design documentation (Rolls-Royce AB, 2010). 

The results are given in Figure 2. The propeller deflects when the load is applied and then 

oscillates around its equilibrium position, as is expected for this type of loading. The bearings 

can be seen deflecting away from their positions initially and then oscillating back to 

equilibrium. The bearing force is then the product of the bearing displacement and stiffness. 

Since the bearings deflect away from their initial position throughout the shaft, it will likely be 

necessary to account for the rigid body modes for the model to be accurate. 

 

PLANS FOR FUTURE WORK 

The model needs further work before it can be useful for the estimation and monitoring of 

transverse propeller and bearing loads. Work on a small-scale laboratory test set up is underway 

which will be used to verify the development of the model. For this set up, a beam will be 

supported by springs to simulate a model similar to that shown in Figure 1. This set up will be 

instrumented such that the input transverse loads, beam displacement, and spring loads can be 

measured simultaneously. The model will then be used to estimate the loads from a measured 

response or input and verify whether the correct measured loads can be obtained. 

Further development of the model itself, including the interaction of the rigid body modes, is 

ongoing. Full-scale measurement of the transverse response of the SAA II shaft line is planned 

in order to determine the necessary damping coefficients for the model. 

 

CONCLUSIONS 

A model for the transverse vibrations of a ship propulsion shaft has been presented. The model 

allows for simulating the shaft response and bearing loads both when the applied loading 

conditions are known and when they are unknown. This allows the model to be used to estimate 

the loading conditions during operation, where it is typically easier to measure the responses.  

The model does not currently match the natural frequencies from design documentation well. 

Further investigation into the assumptions made during the development of the model is 

necessary. 

The model will be validated at small scale in laboratory testing where both inputs and responses 

can be measured to verify whether it can be used to accurately estimate the applied loads. Once 

the model is validated, its use in estimating bearing loads based on the loading conditions or 

response of the shaft can be investigated. 

Finally, full-scale measurements of the transverse vibrations of the propulsion shaft of the 

SAA II will be conducted. These measurements will be integrated into the current measurement 

and monitoring efforts conducted on board. Once a working model is established, it would 

allow for the monitoring of bearings through operational measurements. 



 

Figure 2. Results from solution of forward problem 
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