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ABSTRACT 

The advancement of autonomous surface vessel (ASV) technology emphasizes the need for 

precise and reliable trajectory tracking, often achieved through Nonlinear Model Predictive 

Controllers (NMPC). However, NMPC performance depends on accurate vessel models, which 

are difficult to estimate due to marine environment uncertainties. This study explores 

integrating Reinforcement Learning (RL) with NMPC to reduce reliance on precise modeling. 

The approach involved developing an NMPC for a test vessel and designing a parametric 

approximation RL algorithm to correct state between actual and predicted outcomes. RL-

NMPC performance was tested in both online and offline training scenarios. Experimental 

results demonstrated that the RL-enhanced NMPC effectively reduced state errors through 

online learning. The challenges faced by online learning due to the limitation of test facility 

was overcome by the introduction of simulation-based training. The final offline trained 

controller managed to reduce the state errors by 12% with respect to the conventional controller 

in the test track. However, the system’s robustness against external disturbances was not 

evaluated in this study, leaving room for further investigation. The findings highlight RL’s 

potential to improve NMPC usability and lay the foundation for future studies in complex 

marine conditions. 

KEY WORDS: Nonlinear model predictive controller (NMPC); Reinforcement Learning (RL); 

Autonomous Surface Vessel (ASV) 

INTRODUCTION 

The research on autonomous ship navigation has taken significant interest due to its potential 

for marine surveillance, reduce accidents, enhance performance in harsh sea conditions, and 

improve overall operational efficiency. However, complexity in marine environment involving 

factors such as waves, currents, winds, and ice brings major challenge to achieving this 

objective. Researchers are continuously working to address these barriers and achieve 
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successful autonomy to marine transportation. 

Ship maneuvering can be categorized into two high level segments: controllers designed for 

low-speed maneuvers and position-keeping such as dynamic positioning and controllers 

designed for high-speed operations and trajectory tracking. This paper focuses predominantly 

on the trajectory tracking portion of autonomous surface vessels. According to Fossen (1994) 

trajectory tracking involves three interconnected components: guidance, navigation, and 

control. Guidance is related to generating desired parameters, such as the position, heading, 

and velocities that the vessel need to achieve. Navigation involves determining the vessel’s 

current parameters relative to these desired states. Control portion consist of taking necessary 

actions to bridge the gap between the current and desired states. The primary emphasis of this 

work is to identify and design a suitable controller to enable precise trajectory tracking for 

autonomous surface vessel.  

Control systems for autonomous surface vessels (ASVs) can be designed using various 

approaches. Classical control theory, fuzzy logic, neural networks and model predictive 

controllers are named few. Classical control methods, such as Proportional–integral–derivative 

(PID) controllers, has been one approach due to its simplicity and effectiveness in control 

industry. Moradi and Katebi (2001) proposed a predictive PID controller for ship autopilot 

design, followed by robustness and adaptability check in marine environments. Wang et al. 

(2019) developed a control system for ships using a modified PID algorithm, showing 

improved stability and responsiveness. However, PID controllers had its own limitations such 

as handling nonlinearity of the models and external disturbances. Majid and Arshad (2015) 

presented a fuzzy self-adaptive PID tracking controller for ASVs, achieving enhanced 

trajectory tracking performance. Rae et al. (1993) utilized fuzzy rule-based techniques for 

docking autonomous underwater vehicles. In recent literature, application of neural network-

based controllers caught attention of many. Cheng et al. (2020) explored neural network-based 

control for underactuated surface vessels, ensuring transient performance through experimental 

validation. The dependency on the training data and adapting to situation beyond normal 

operating conditions has always been a challenging task for Artificial Neural Network (ANN) 

which is quite common in complex ocean environment.  

Model predictive controller (MPC) in another well-established controller mechanism for 

autonomous surface vessels with good capability to handle nonlinearities and disturbances. 

Alagili et al. (2024) showed ability of nonlinear model predictive controller (NMPC) 

performance of Dynamic Positioning (DP) system under different sea conditions. Islam et al.  

(2023) presented offset free tracking control for both disturbed and disturbance free 

environment to maintain trajectory tracking accuracy. However, these approaches are heavily 

dependent on the accuracy of the model used. The ability of obtaining accurate vessel model 

has always been a difficult task due to the complexities of ocean dynamics. Martinsen et al. 

(2022) demonstrated combination of both Reinforcement Learning (RL) and NMPC for 

overcome the model inaccuracies and time-varying disturbances in DP operations. 

This paper focuses on developing NMPC for a model ship and using the RL to address the 

mathematical model inaccuracies via parameter tuning for trajectory tracking operation. The 

major objective of above activity is to reduce model vessel’s actual and predicted states. Then, 

the developed method validated with model ship in Ocean Engineering Basin of National 

Research Council of Canada. The rest of the article is formulated as follows. The mathematical 

modeling of vessel, development of NMPC and RL algorithm are discussed in the section 2. 

Experimental setup results and comparison is summarized in section 3. Future works and 

conclusion are described in finally in section 4. 



MATERIAL AND METHODS 

This work aims to design and implement a controller for a model ship with the help of 

reinforcement learning (RL) to enhance its performance. Furthermore, this paper is being used 

to address the real-time implementation challenges faced as well. The methodology used to 

achieve this goal consists of several steps. Initially the approximated mathematical model of 

the ship is estimated to serve as the model. Next, a NMPC is developed for trajectory tracking 

requirements. Then, the controller performance will be validated in simulation-based testing. 

Parallelly, the RL algorithm is introduced to the controller to minimize predicted and actual 

state errors. As per the next step the simulation-based testing will be conducted to evaluate its 

performance. Finally, the algorithm is tested on the actual model ship for performance. 

Simultaneously, this paper is used to address practical implementation issues such as 

computational constraints and hardware limitations. This approach ensures safe and reliable 

implementation while addressing both theoretical and practical challenges. Materials used in 

this study were discussed in subsequent sections. 

Vessel Modeling 

The vessel particulars have been extracted from the People Supply Vessel (PSV) model ship 

(1:45), which is a testing model in the offshore engineering basin research facility of the 

National Research Council Canada. Vessel particulars are attached in Table 1. The vessel 

consists of two main propellers and two tunnel thrusters. It is considered symmetrical along 

the keel and the same torque is applied to both symmetrical pairs when there are no disturbances 

in the system. 

Table 1. PSV model ship particulars 

Particulars Full Scale Unit Model Scale Unit 

Length, OA 87.39 m 1.942 m 

Length, WL 84.285 m 1.873 m 

Beam 19.98 m 0.444 m 

Draft, Mean 6.5 m 0.1444 m 

Displacement 7737.328 Tonne 82.838 Kg 

 

According to Fossen (2011), marine vessels consist of 6 Degrees of Freedom (DOF), as 

illustrated with the PSV model ship in Figure 1. Since roll, pitch and heave motions are not 

considered as controllable maneuvers. In order to simplify the approach, we have taken the 

main 3 DOF, namely, surge, sway and yaw into consideration. 



 

Figure 1. Mariane vessel motions 

Kinematics and dynamics developed according to Fossen (2011) keeping the earth based 

coordinates with heading angle and ship body based velocities as states. Notations are further 

described in Figure 2. The earth-based position vector denoted as 𝜂 = [𝑥 𝑦 ψ]𝑇  and ship 

body based velocity vector denoted as 𝜐 = [𝑢 𝑣 r]𝑇 . The motion equations are further 

described in (1) and (2) 

 

Figure 2. Earth based {n} and ship body-based {b} notations 

 𝜂̇ = 𝐽(ψ)𝜈 (1) 

 𝑀𝜈̇𝑟 + 𝐶(𝜈𝑟)𝜈𝑟 + 𝐷(𝜈𝑟)𝜈𝑟 =  𝜏𝑐 + 𝜏𝑒𝑛𝑣 (2) 

 
𝐽(ψ) = [

cos (ψ) −sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1

] 
(3) 

𝑀 ∈ 𝑅3×3, 𝐶(𝜈) ∈ 𝑅3×3, 𝐷(𝜈) ∈ 𝑅3×3  are estimated by system identification procedure 

described as in (Alagili et al., 2024). The 𝐽(ψ) acts as the transformation matrix from ship 

body based coordinates to earth based coordination. The 𝜏𝑐 ∈ 𝑅3  and 𝜏𝑒𝑛𝑣 ∈ 𝑅3  are forces 

exerted towards the ship in the main DOF via thrusters and environment.  

Nonlinear Model Predictive Controller (NMPC) 

Initially, the controller is developed as a constrained open-loop optimal control problem in a 

MATLAB environment. The state of the vessel is constructed as a combination of earth-based 

position and ship body-based velocities 𝑋 = [ 𝜂𝑇 𝜐𝑇]𝑇. The fmincon interior-point algorithm in 



MATLAB is being used with fixed size moving horizon (Jayasiri et al., 2017) to solve the 

objective function in equation (4). The Q, R and P are tuning parameters in this equation and 

IC and 𝑋𝑇 are constant and trajectory respectively. 𝑈𝑇 is the control input generated at time T. 

 
𝐽 =  

𝑎𝑟𝑔𝑚𝑖𝑛
𝑋, 𝑈

 𝐼𝐶 + ∑ 𝑄(𝑋𝑘 − 𝑋𝑘𝑇)2

𝑁−1

𝑘=0

+ 𝑅(𝑋𝑁 − 𝑋𝑁𝑇)2 + ∑ 𝑃(𝑈𝑘 − 𝑈𝑘+1)2

𝑁−1

𝑘=0

    

𝑠. 𝑡. 𝑋𝑘 = 𝑓(Xk−1, 𝑈k−1) 

(4) 

Trajectory Generation 

Trajectory points are generated by discretizing the continuous path for a given speed and time 

interval for motion planning. Initially, the trajectory is parameterized to generate x and y 

coordinates and heading to outline the trajectory. This activity is followed by computing the 

velocity profiles by taking numerical derivatives of the position data, ensuring smooth 

transitions between states. Then, the velocities are transformed to ship body based velocities to 

provide complete state representation. In this study, we have selected the figure-8 shaped 

trajectory due to its availability of the entire set of motions of the vessel and its ability to iterate 

multiple cycles in training episodes. 

Reinforcement Learning Algorithm 

Reinforcement learning (RL) can be categorized as a learning technique which learns what to 

do according to the situation in order to maximize the numerical reward. Here, we work on a 

semi-gradient Sarsa algorithm with parametric approximation of the action-value function 

𝑞̂(𝑋, 𝑈, 𝑊) ≈ 𝑞∗(𝑋, 𝑈), where 𝑊 ∈ 𝑅2  is a finite dimensional weight vector (Sutton and 

Barto, 2018). Given the optimization problem, we define the parametric action value function 

as equation 5 and the update for one-step Sarsa as in equation 6. The pseudo code for the 

learning algorithm is given in the below box. 

 

 𝑞̂(𝑋, 𝑈, 𝑊) =  
𝑚𝑖𝑛
𝑋, 𝑈

  𝑤1 + ∑ 𝑄(𝑋𝑘 − 𝑋𝑘𝑇)2

𝑁−1

𝑘=0

+ 𝑤2(𝑋𝑁 − 𝑋𝑁𝑇)2 + ∑ 𝑃(𝑈𝑘 − 𝑈𝑘+1)2

𝑁−1

𝑘=0

    (5) 

 𝑊𝑡+1 =  𝑊𝑡 +  𝛼[𝑅𝑡+1 +  γ 𝑞̂(𝑋𝑡+1, 𝑈𝑡+1, 𝑊𝑡) − 𝑞̂(𝑋𝑡 , 𝑈𝑡 , 𝑊𝑡)] ∇𝑞̂(𝑋𝑡+1, 𝑈𝑡+1, 𝑊𝑡) (6) 

 

Algorithm 

Initialize state X, and action U 

Loop for each step: 

  Choose next action, U’ as a function of 𝑞̂(X, U, W) (greedy) 

  Reward =  K × ‖Xactual − Xpredicted‖ 

  δ ←  Reward +  γ𝑞̂(X’, U‘, W)  − 𝑞̂(X, U, W) 

  W ←  W +  ⍺ δ⛛𝑞̂(X, U , W) 

  X, U ←  X’, U’ 



RESULTS AND DISCUSSION 

The experiment was carried out in the Ocean Engineering Basin of the National Research 

Council in St John’s with the PSV hull. The basin is 55m in length and 25m in width. It consists 

of a Qualisys motion capture system to measure earth based position and vessel velocities. The 

active markers are placed on the vessel, allowing the motion capture system to identify its 

position and orientation. The basin and ship before test are shown below in Figure 3. 

 

Figure 3. Ocean Engineering Basin and PSV model before testing 

The objective of the experiment is to evaluate the performance of improvement of the controller 

after incorporating the reinforcement learning algorithm into the cost function. The figure-8 

motion was selected as a test track with an 8m radius in each loop for the evaluation. The vessel 

was set to maneuver around the shape at a speed of 0.2m/s. Trajectory points were generated 

for the test track as described in the trajectory generation chapter. The initial test was carried 

out on conventional NMPC and NMPC+RL with online learning. The results are shown in 

Figure 4 and Figure 5 respectively. The predicted and actual state error for each time step is 

illustrated in Figure 6 and Figure 7. In the figures state errors for positions calculated in meters 

while angle calculated in radians, similarly speeds states calculated m/s and rad/s respectively. 

However, the test could not be completed full path due to the signal drop-out zones in the setup. 

This hinders the overall objective of performing the online RL training opportunity by 

conducting iterative test runs on the track. The list of challenges faced, the impact on the test, 

and remedies taken are summarized in the Table 2. 

 

Figure 4. Conventional NMPC performing figure-8 motion 



 
Figure 5. NMPC+RL performing figure-8 motion 

 
Figure 6. Predicted and actual state error for NMPC 

 
Figure 7. Predicted and actual state error for NMPC+RL 



Table 2. Experiment related challenges and action taken 

Challenge Impact Remedy 

Signal dropout zones 
Could not completed full 

figure-8 motion 

Adaptation of offline 

iterative training 

Inconsistency in starting 

point 
Incomparable initial states 

Exclude initial 25 timesteps 

from comparison 

Asymmetry in thruster 

allocation 

Difficulty in comparing 

asymmetric maneuvers 

Avoid asymmetric 

maneuvers 

Limited time availability of 

testing facility 

Could not train the model 

with real vessel 

Adaptation of offline 

training 

Inconsistency in 

environmental condition 

Change in outcomes in 

different days 

Average out results of 

multiple days 

 

In order to overcome signal dropout zones and limited time availability challenges, an offline 

training methodology was introduced. The purpose of the offline training was to mimic the 

ship’s travel around the test track for multiple cycles and learn the optimum parameters in a 

simulated environment before launching the actual vessel on the basin for testing. The offline 

training is carried out in a simulation for 20,000 steps, which is equivalent to 40 cycles in a 

similar path. This session was conducted in two segments, one learning without noise and one 

with randomly generated noise included in the states and actions. Then, the trained parameters 

are fed into the experiment setup for actual performance evaluation. The vessel performance 

of the offline trained controller performing figure-8 is illustrated in Figure 8. The comparison 

of the total prediction and actual state error with respect to conventional NMPC controller 

average out for multiple runs is shown in Figure 9. Furthermore, the individual average state 

error distribution for each scenario is illustrated in Figure 10. 

 
Figure 8. Offline trained (without noise) NMPC+RL performing figure-8 motion 



 

Figure 9. Total error comparison for each controller with multiple run average 

 

Figure 10. Total state error comparison for each controller with multiple run average 

CONCLUSIONS AND FUTURE WORK  

The study managed to successfully maneuver the ASV in a predefined path, overcoming real-

time experimental challenges. The controller’s performance was significantly improved with 

the usage of RL, achieving notable reduction in state errors. Additionally, offline-trained 

controller showed superior performance over online-learning controller which highlights the 

benefit of offline training. 

Future work will extend to evaluate the robustness of the controller under external disturbances, 

such as wave and wind forces, to ensure practical applicability in dynamic maritime 

environments. Further research on RL or Hybrid controller to improve its performance is 

proposed to achieve more reliable and efficient vessel control systems 
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