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ABSTRACT  

In this paper, the efficacy of an effective fluid model (EFM) is studied for replicating the 

effects that hydrodynamics has on the interaction between level ice, modeled as a semi-

infinite Kirchhoff-Love plate, and a downward sloping structure, modeled as a rigid and 

immobile body. The proposed EFM is based on a distributed frequency-independent added 

mass and damping coefficient, as well as a damper located at the point of contact with the 

structure. The optimal value of the three coefficients of the EFM is obtained by minimizing 

the error of the predicted breaking length and maximum contact force over a range of ice 

velocities when compared to a true hydrodynamics ISI model that is based on incompressible 

potential flow. The resulting effective hydrodynamic ISI model has greatly improved 

performance compared to an ISI model that only accounts for hydrostatics, even when the 

parameters of the system are changed. Moreover, it is much easier to implement and has 

significantly faster calculation times than the true hydrodynamic ISI model.  

KEY WORDS: Effective fluid modeling; hydrodynamics; bending failure; ice-slope 

interaction.  

INTRODUCTION 

Due to the increase in global temperatures and the resulting reduction in sea ice cover, the 

Arctic region is becoming more accessible for shipping, tourism and hydrocarbon extraction. 

All three opportunities rely heavily on floating structures and these structures are generally 

equipped with a downward sloping hull in order to minimize the ice loads. This makes it 

paramount to both understand and be able to predict ice-slope interaction.  

Due to the limited availability of full-scale data and the expenses associated with obtaining 

model scale data, numerical models are still the most common method to study ice-slope 

interaction. Hydrodynamics has been shown to be a key component of such a model (Valanto 

1992; Valanto 2001; Valanto 2006). Through both numerical and experimental modeling, 

Valanto identified that the inertia of the water plays an important role, even at low interaction 

velocities. These findings are confirmed by more recent studies (Sawamura et al. 2008; Wang 

& Poh 2017; Keijdener et al. 2018).   

Despite this evidence showing its importance, the majority of ice-slope interaction models do 

not account for hydrodynamics. In a recent study by (Keijdener et al. 2018), it is shown that 

excluding hydrodynamics results in an underprediction of the contact load which, in turn, 

causes an overprediction of the breaking length, with errors up to 100% depending on the ice 

velocity being considered. It is, therefore, paramount to improve the adoption rate of 



hydrodynamics in ice-floater interaction models. In the author's opinion, one of the main 

reasons for the prevalence of hydrostatic models is the practical issue associated with 

implementing hydrodynamics. One approach to overcome this issues is to use effective fluid 

models (EFM). These models aim to capture the effects that hydrodynamics has on ice-slope 

interaction in an effective manner. However, in contrast to true hydrodynamic models, their 

effective nature means that they remain very simple, making it trivial to implement them.  

A common type of EFM that has been used previously is a frequency-independent added 

mass coefficient. This EFM can be added to a beam or plate model, thereby obtaining a 

complete ice-slope interaction model. One of the first to use such a frequency-independent 

added mass coefficient was (Sørensen 1978). The value of this coefficient was set to the value 

of a rotating plate obtained by (Engelund 1966). Such an EFM was also used to model the 

dynamical uplift of level ice (Zhao & Dempsey 1992; Dempsey & Zhao 1993; Zhao & 

Dempsey 1996). In this series of papers, it was concluded that the fluid underneath the ice 

significantly increases the amount of mass and damping experienced by the ice. Various 

values of the added mass coefficient were investigated and the predictions of the resulting 

model were compared to the predictions of a model that includes hydrodynamic based on 

incompressible potential flow. It was concluded that a constant added mass coefficient cannot 

capture the time- and spatial dependence of the mass and damping introduced by 

hydrodynamics. In a study by (Lubbad et al. 2008), the efficacy of an EFM based on a 

constant added mass coefficient in combination with a damping term that has a second order 

dependence on the velocity was investigated. This study concluded that the accuracy of the 

effective model is lacking compared to a reference model that includes hydrodynamics.  

In this paper, an attempt is made to create an EFM that is based on a frequency-independent 

added mass and damping coefficients. This EFM is added to a 2D Kirchhoff-Love plate that 

is supported by a Winkler foundation, resulting in a complete 2D ice-slope interaction model. 

The optimal value of the coefficients of this EFM is found by minimizing the discrepancy 

between the predictions of this model with respect to the predictions of a reference ice-slope 

interaction model that includes hydrodynamic based on incompressible potential flow.  

The hydrodynamic reference model is introduced first. Thereafter, the proposed EFM is 

discussed and the scheme that was used to determine the optimal values of its coefficients is 

explained. The efficacy of the resulting effective ice-slope interaction model is then studied 

for a wide range of parameters. Lastly, the results are discussed and the conclusions are 

given.  

THE HYDRODYNAMIC REFERENCE MODEL 

The 2D hydrodynamic reference model is introduced first. In this paper, only the model 

description is covered. The solution method based on the pseudo-force approach is not 

covered and the reader is referred to (Keijdener et al. 2018) for the details.  

An overview of the reference model is given in Fig. 1. In this model, the ice is present for 

0x  and is modeled as a semi-infinite Kirchhoff-Love plate. As no ice is present for 0x  , 

the fluid has a free surface in that region. The ice moves towards the structure with a constant 

velocity iceV . It is assumed that the interaction between the fluid and the structure can be 

ignored. Therefore, the structure's geometry is not included in the mathematical model of the 

fluid. For the interaction with the ice, the structure is modeled as an immovable and rigid 

body with its geometry reduced to an inclined line that has an angle   with respect to the x -

axis and that passes through the point 0x z  . Due to its forward velocity, the ice impacts 

the hull. This resulting interaction is resolved using a contact model that penalizes overlap 

between the ice and the structure. The ice continues to slide down the hull until it fails in 

bending.  



An overview of the mathematical model is given next, starting with the equations governing 

the fluid and followed by those of the ice.  

 

Figure 1. The incoming ice floe moves towards the structure with a constant velocity iceV  . 

For the interaction with the ice, the structure is idealized as an immovable and rigid body 

with its geometry idealized to an inclined line. The ice slides downwards along this line until 

it fails in bending.  

Governing equations of the fluid 

The fluid is modeled as an incompressible potential flow and is, therefore, governed by the 

Laplace equation. The fluid layer is of finite depth H  and the rigid boundary at the bottom 

prevents penetration of the fluid into the seabed. The fluid pressure ( , , )p x z t  is modeled 

using the linearized Bernoulli equation for unsteady potential flow (Stoker 1992), given that 

the nonlinear term was shown to be of negligible importance for ice-slope interaction 

(Keijdener et al. 2018). This results in the following three equations:  

 ( , , ) 0 ( , ) ( ,0)x z t x z H          (1.1) 
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where ( , , )x z t  is the displacement potential of the fluid (Jensen et al. 2011), w  is the 

fluid's density, g  the gravitational constant, the dot denotes derivatives with respect to time, 

and round brackets denote an open interval while square brackets, in the equations to follow, 

denote a closed interval. Note that the first term on the right-hand side of Eq. (1.3), 
w  , is 

responsible for hydrodynamic effects while the second term, 
w g

z








, is responsible for the 

hydrostatic effects. By disabling the first term, a hydrostatic model can be obtained.  

Governing equations of the ice 

The ice interacts with the fluid along their interface located at 0 0x z   . Consequently, 

the equation of motion of the ice includes the pressure exerted by the fluid. Outside this 

region, no ice is present and the fluid satisfies the pressure release condition. As the draft of 

the ice can be ignored, as was shown by (Williams & Squire 2008), the boundary condition of 

the ice can be formulated at 0z  :  
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where the prime denotes a spatial derivative, i  is the density of the ice, h  its thickness, 

( , )w x t  its vertical displacement, 3 2

i /12 / (1 )D Eh    its bending stiffness, with E  being 

the ice's Young's modulus and   its Poisson ratio. Note that iD  aims to capture the bending 

behavior of level ice, including any variation of temperature, stiffness or any other property 

across its thickness, in an effective manner, similar to what is done for functionally graded 

materials. The rotational inertia of the ice and the effect of the axial compression on the 

vertical motions of the ice are ignored as both terms were shown to be of negligible 

importance (Keijdener et al. 2018). Next, as cavitation is not accounted for, continuity 

between ice and fluid dictates that their vertical displacements must be the same along their 

interface: 
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Lastly, two boundary conditions are needed at 0x   to complete the description of the ice. 

The ice interacts with the structure at this boundary. The contact pressure resulting from this 

interaction is integrated and translated to the neutral axis of the plate, resulting in vertical 

force 
ct,zF  and moment ctM . These interaction loads are accounted for in the boundary 

conditions of the plate which assure a balance of forces and moments at the plate's edge:  
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The contact model used to calculated these loads is described in (Keijdener & Metrikine 

2014). This contact model is piece-wise linear in time as it switches between two linear 

modes of interaction. As the moment of transition between the two modes is not known in 

advance, the contact model is nonlinear in time. At x    the plate satisfies the Sommerfeld 

radiation condition, assuring that the displacements are finite and that no energy is radiated 

from x   .  

The ice slides down the structure until it fails in bending. Failure is defined as the moment in 

time failt  when the axial stresses due to bending first exceed the ice's flexural strength fl : 

 max fl2
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where the max-subscript implies the maximum axial stress within the cross-section of the ice.  

The hydrodynamic reference model introduced in this section is referred to as HD  in the 

remainder of this paper. The same model but with hydrodynamics disabled, i.e. with the first 

term on the right-hand side of Eq. (1.3) disabled, will be referred to as the hydrostatic model 

HS .  

  



DESCRIPTION OF THE EFFECTIVE FLUID MODEL 

It has been shown that the effect of hydrodynamics on ISI is of the added mass and added 

damping type (Valanto 1992; Dempsey & Zhao 1993; Keijdener et al. 2018). For this reason, 

the EFM proposed in this study is based on a frequency-independent added mass and a 

frequency-independent added damping coefficient. By constructing the EFM in this manner, 

it is trivial to add it to an existing ice-slope interaction model that only accounts for 

hydrostatics. In this paper, the EFM is added to HS . By augmenting HS  with this EFM, 

an ice-slope interaction model is obtained that includes all four essential components as 

identified in (Keijdener et al. 2018), namely bending, hydrodynamics, the inertia of the ice, 

and hydrostatics. The resulting effective ice-slope interaction model will be referred to as 

eHD .  

By disabling the hydrodynamic term in Eq. (1.4), 
w  , substituting the interface condition 

in Eq. (1.5), and adding the frequency-independent added mass and added damping 

coefficient, the equation of motion of eHD  is obtained:   

 i d crit i w(1 ) 2 0 mh C w C w D w gw        (1.8) 

where crit i wC h g  . mC  and d  are the unknown dimensionless added mass and added 

damping coefficients, where the latter is expressed in terms of critical damping, analogous to 

a damped harmonic oscillator. The value for these coefficients is obtained using the 

optimization scheme that is explained in the next section.  

eHD  has two unknown coefficients, namely mc  and d . To further improve the efficacy of 

the EFM, a dashpot is added at the boundary of the ice that is located at 0x  . This dashpot 

could capture the radiation of energy into the open-water region through surface waves. 

However, the importance of wave radiation on the ice-slope interaction is unclear as in 

(Keijdener et al. 2018) it is concluded that radiation damping does not have a significant 

impact on the interaction while (Sawamura et al. 2008) found a 40% reduction in the 

displacements of the ice when disabling wave radiation. Despite lacking a clear physical 

substantiation for this dashpot, its addition does not significantly affect the computational 

efficiency of the EFM and is, therefore, an efficient way to improve its efficacy. Eqs. (1.6) are 

updated accordingly:  
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where bcC  is the unknown damping coefficient of the dashpot with dimensions m
2
. As the 

addition of the dashpot may not be desirable from a physical point of view, the optimization 

of the EFM's coefficients will be done twice, once with bc 0C   and once with bc 0C  . 

  



OPTIMIZATION 

The optimal value of the coefficients of the EFM, mC , d  and bcC , are found through an 

optimization process. The goal of this process is to find the set of coefficients that results in 

the smallest discrepancy between the predictions of eHD  and the predictions of the 

reference hydrodynamic model HD  that was introduced previously. The predictions that 

will be considered are the breaking length as a function of ice velocity br ice( )l V and the 

maximum contact force that occurred during the interaction as a function of ice velocity 

max ice( )F V  as these are important aspects of ice-slope interaction. Based on these two 

predictions, the discrepancy is quantified using the dimensionless error   that is defined as:  
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where the four terms with the HD superscript are the predictions of HD  and the remaining 

two terms are the predictions of eHD .  

The following bounds are used for the parametric space wherein the optimal values are being 

sought: 0 12mC  , d0 4.5  and 6

bc0 12 10C    m
2
. These bounds were chosen to 

assure that the optimal set of coefficients falls within the search space. The volume is 

discretized using a step size of 2, 0.5 and 62 10  m
2
 respectively, resulting in 420 grid points. 

Spline interpolation is then used to interpolate between the grid points to find the set of two 

(or three) coefficients that leads to the smallest error  . 

RESULTS 

The results are presented next. First, the effect of each coefficient on the predictions of eHD  

is studied. Thereafter, the optimization is done for the set of default parameters of the system 

that is listed below. Noting that the optimal value of the coefficients will change depending 

on the physical parameter of the system used, the sensitivity of the coefficients to changes in 

the physical parameters is studied.  

The following set of default parameters are used (Keijdener et al. 2018): 1h  m, i 925   

kg/m
3
, w 1025  kg/m

3
, 9.81g  m/s

2
, 100H  m, 5E  GPa, 0.3  , c 600  kPa, 

fl 500  kPa, ice-steel friction coefficient 0.1, hull angle 45  ,  ice 0,0.5V   m/s, the 

number of fluid modes set to k 250N   and an initial time step 3

t 10  s. The time step was 

adaptively shortened to assure convergence for all cases considered in this paper.  

The effect of each coefficient on the predictions  

The effective fluid model has three coefficients. The effect of each coefficient on the 

predictions of eHD  is presented next.  

The effect of mC  on the predictions of eHD  is shown in Fig. 2. The additional mass 

increases the magnitude of the peak in the contact force that occurs during the initial impact, 

as can be seen in the bottom graph. This increase in peak force is also reflected in the middle 

graph by an increase in max ice( )F V  and causes the ice floe to fail dynamically at lower ice 

velocities, thereby reducing the transition velocity s dV   that marks the transition from static 

to dynamic failure. This trend can be observed in the top graph which shows that as mC  



increases, s dV   of eHD , eHD

s dV 
, decreases and approaches that of the reference model HD

s dV 
.  

The effect of d  on the predictions of 

eHD  is shown on the left-hand side 

in Fig. 3. First, the bottom graph 

shows that increasing d  smoothens 

ct ( )F t . This, in turn, has a 

smoothening effect on max ice( )F V  and 

br ice( )l V  when eHD

ice s dV V  , as is 

evident from the top and middle 

graph. Second, the added damping 

results in a slight increase in ct ( )F t , 

resulting in a slight increase in 

max ice( )F V  and a shorter br ice( )l V .  

The effect of bcC  on the predictions 

of eHD  is shown on the right-hand 

side in Fig. 3. The bottom graph 

shows that increasing bcC  has a 

smoothing effect on ct ( )F t , similar to 

d . However, as the dashpot is only 

present at 0x   whereas d  is 

present 0x  , the dashpot has a 

strong effect on max ice( )F V  and only a 

weak effect on br ice( )l V . Its effects on 

br ice( )l V  are limited as the breakage 

of the ice is mainly driven by the 

distributed terms, i.e. mc  and d , as 

shown previously.  

  

 

 

 

 

 

 

Figure 2. The effect of mC  on the predictions of eHD . The bold curves show HD . The 

dashed curve shows  eHD d bc HS0mC C   . All subsequent solid curves are 

evaluations at {2,4,6,8,10}mC   respectively. For the bottom graph ice 0.04V   m/s. 



 

Figure 3. Left: The effect of d  on the predictions of  eHD . The bold curves show HD  . 

The dashed curve shows  eHD d bc HS6.26, 0mC C    . All subsequent solid curves 

are evaluations at d {1,2,3,4}    respectively. For the bottom graphs ice 0.04V   m/s. Right: 

The effect of bcC  on the predictions of eHD . The bold curves show HD . The dashed curve 

shows   eHD d bc HS6.26, 1.06, 0mC C   . All subsequent solid curves are 

evaluations at  6

bc {4,8} 10C   m
2
 respectively. For the bottom graph ice 0.04V   m/s. 

 

Optimal sets of coefficients 

Based on the optimization process described above, the optimal sets of coefficients were 

determined. The optimal set with bc 0C   will be referred to as  while the optimal one with 

bc 0C   will be referred to as * . The optimization was done for the default set of 

parameters, leading to the following optimal sets: 2

def d bc{ }2.83, 1.46, 0 mmC C    

and * 6 2

def d bc6.26, 1.0 }{ 6, 4.85 10  mmC C     . The performance of  eHD def  and 

 *

eHD def
 is shown in Fig. 4. The figure shows that the prediction of  eHD def  are 



significantly better than those of 
HS

 and that the predictions of  *

eHD def
 are slightly 

better still.  

 Figure 4. The performance of   eHD def ,  *

eHD def
 and 

HS
. For the right graph 

ice 0.04V   m/s. 

 

Sensitivity analysis 

As the predictions of the reference model HD  depend on the physical parameters of the 

system, the optimal set of coefficients will be different for each set of physical parameters 

used. However, as having parameter-dependent coefficients is impractical, the option of using 

 eHD def  and  *

eHD def
 independently of changes to the physical parameter is explored. 

Since these two sets become suboptimal when the physical parameters of the system are 

changed, the error   , see Eq. (1.10), of both models will increase. This increase in error is 

shown in Table 1. All parameters were set to their default values, except for the parameter 

listed in the left column which was set to the specified value.  

  

Table 1. The increase in the error    when using  eHD def  and  *

eHD def
  independently 

of changes in the physical parameters of the system. The column with the header ` ' lists the 

error for the listed change in the parameter. The column with header `Incr.' lists the increase 



in error relative to the error for the default set of parameters which is 0.24 and 0.12, 

respectively. 

Table 1 shows that the performance of  eHD def  is insensitive to change in Young's 

modulus E , flexural strength fl  , and water depth H . Changes in the ice thickness h , 

crushing strength cr  and hull angle   result in a medium increase in error. Overall it can be 

concluded that  eHD def  is fairly insensitive to changes in the parameter set and is, 

therefore, quite robust.  

The performance of  *

eHD def
 is also insensitive to changes in the water depth H , mildly 

sensitive to changes in ice thickness h , Young's modulus E , hull angle  , and very sensitive 

to changes in flexural strength fl , crushing strength cr . It is also important to note that 

despite the larger relative increase in error, the error of  *

eHD def
 is smaller than the error 

of  eHD def  for all cases considered.  

In order to visualize what the increase in error mean in terms of deterioration of the 

prediction of both models, their predictions for one the worst cases, namely when fl  is set to 

250 kPa, are shown in Fig. 5. Despite this increase in error, both models still perform better 

than HS .  

 

Figure 5. The performance of   eHD def  and  *

eHD def
 when fl  is changed to 250 kPa. 

For the right graph ice 0.04V    m/s.  

 

Even though eHD  is a fairly robust model as shown by Table 1, there might be situations in 

which changing the parameters is desirable in order to minimize the error. As such, the 

optimization process was redone for each change in parameter, resulting in the sets of 

coefficients listed in Table 2. The table shows that when the optimization is redone when the 

physical parameters are changed, the error of both  eHD def  and  *

eHD def
 remains of 

the same order of magnitude.  



  

Table 2. The sets of optimal coefficients for a range of system parameters and the resulting 

error. 

DISCUSSION 

Comparison with other effective fluid models 

Two other studies have investigated using an EFM in the context of the hydrodynamic 

response of elastic ice as mentioned in the introduction. It is interesting to compare those 

models with the EFM proposed in this paper.  

First, the possibility of using a frequency-independent added mass coefficient for the 

dynamical uplift of level ice was investigated by Dempsey and Zhao (Zhao & Dempsey 

1992; Dempsey & Zhao 1993; Zhao & Dempsey 1996). All three studies concluded that this 

approach cannot reproduce the effects of hydrodynamics because the wave motion is 

fundamentally different when hydrodynamics is included. Although these studies do not 

consider ice-slope interaction, it is interesting to assess how the proposed EFM performs 

when only an added mass coefficient is used, i.e. when d bc 0C   . The optimal value of mc  

for the default set of parameters is 4.44 [-]. In the papers by Dempsey and Zhao papers, the 

main prediction that was studied was ct ( )F t . Fig. 6 shows that ct ( )F t  is also poorly predicted 

by the proposed EFM when d bc 0C   . From this, it can be concluded that added damping 

is an essential component of the EFM, a finding that is supported by the observations 

regarding the effects of hydrodynamics on ice-slope interaction.  



 
Figure 6. The performance of  eHD d bc4.44, 0mC C     for the default set of 

parameters. For the right graph ice 0.04V    m/s.  

Secondly, (Lubbad et al. 2008) studied using a frequency-independent added mass and 

damping coefficient for ice-slope interaction. However, the difference with the proposed 

EFM is that the added damping term was multiplied with the squared fluid velocity. They 

found that this damping term had a marginal influence on the response of the ice. Therefore, 

this model also only considered added mass and it is, therefore, likely that this is the reasons 

for the unsatisfactory agreement with their hydrodynamic reference model.  

Applicability of the proposed effective fluid models 

Although the proposed effective fluid models greatly improve the predictions of HS , 

several reservations are in order. Firstly, in this study, only the interaction with a sloping 

structure was considered. The applicability of the EFM to other cases, like the uplift scenarios 

considered in (Dempsey & Zhao 1993; Zhao & Dempsey 1996) or interaction between 

individual ice floes, has yet to be investigated. Moreover, as the current model is 2D, its 

applicability for ice-slope interaction in 3D is unknown.  

CONCLUSIONS  

In this paper, an effective fluid model was presented that can accurately reproduce the effects 

that hydrodynamics has on ice-slope interaction. This fluid model can be added to existing 

ice-sloping interaction model that only includes hydrostatics with minimal effort. The 

resulting effective ice-slope interaction model is very simple but its predictions are 

significantly better than a hydrostatic model. The model is also fairly robust in that its 

predictions remain accurate even when the physical parameters of the system are changed. 

While the applicability of the proposed fluid model to a wider range of IFI problems remains 

to be investigated, the proposed approach is very promising.  
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