
Proceedings of the 25th International Conference on 
Port and Ocean Engineering under Arctic Conditions 

June 9-13, 2019, Delft, The Netherlands 

 
 
 

 
 

 

Peridynamic modelling of polycrystalline ice 
 
 
 

Wei Lu1,2, Mingyang Li1, Bozo Vazic1, Selda Oterkus1 and Erkan Oterkus1  
1University of Strathclyde, Glasgow, UK 
2Harbin Engineering University, Harbin, China 

 
 

ABSTRACT 

Due to the harsh environment of the Arctic region, ship structures must be designed to 
withstand ice loads in case of a collision between a ship and ice takes place. Although 
experimental studies can give invaluable information about ship-ice interactions, full scale tests 
are very costly to perform. Therefore, computer simulations can be a good alternative. Ice-
structure interaction modelling is a very challenging process. First of all, ice material response 
depends on many different factors including applied-stress, strain-rate, temperature, grain-size, 
salinity, porosity and confining pressure. Furthermore, macro-scale modeling may not be 
sufficient to capture the full physical behaviour because the micro-scale effects may have a 
significant effect on macroscopic material behaviour. Hence, it is necessary to utilize a multi-
scale methodology. By taking into account all these challenging issues, a state-of-the-art 
technique, peridynamics can be utilized for ice fracture modelling. Peridynamics is a non-
classical (non-local) continuum mechanics formulation which is very suitable for failure 
analysis of materials due its mathematical structure. Cracks can occur naturally in the 
formulation and there is no need to impose an external crack growth law. Furthermore, due to 
its non-local character, it can capture the phenomenon at multiple scales. In this study, the 
utilization of peridynamics will be presented to simulate mechanical behaviour of 
polycrystalline ice by modelling individual grains. 
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INTRODUCTION 

In Arctic regions, the accurate prediction of ice behaviour plays a significant role in the 
optimum design of marine structures and polar ships. The naturally generated ice has usually 
polycrystalline structure which can be characterized by its average grain size, grain morphology, 
and grain orientation, and is highly dependent on the properties of grain boundary which can 
be been associated with microcracks (Gold 1960; Gold 1967; Gold 1999). Therefore, it is a 
great challenge to fully understand the behaviour of polycrystalline ice.  



In order to study the behaviour of polycrystalline material, various experiments have been done 
by using X-ray analysis (Liu et al., 1992; Gay et al., 1954). However, although the results 
obtained from experiments provide very useful information for the future studies, the expensive 
cost of equipment and time-consuming procedures of preparation of the material limit its wide 
application. Currently, with the development of high-performance computing, the numerical 
simulations become one of the predominant approaches utilized in the polycrystalline material 
analysis.  Amongst the computational techniques, the cohesive zone model (CZM) within the 
framework of the FEM method is one of the most widely used approaches for fracture analysis 
of polycrystalline systems. A two-dimensional finite element model was developed by Warner 
and Molinari (2006) to investigate intergranular fracture in alumina with the grain interiors 
modeled as anisotropic elastic material and the grain boundary properties were fitted with 
experimental data. Sfantos and Aliabadi (2007) proposed boundary cohesive grain element 
model to simulate the intergranular microfracture of SiC. To investigate the transition from an 
intergranular to a transgranular mode of fracture, the extended finite element method (XFEM) 
was used to model quasi-static crack propagation (Sukumar et al., 2003). For the 
polycrystalline ice, Gribanov et al. (2018) implemented the cohesive zone model within an 
implicit finite element method to simulate the 4-point bending test of freshwater ice beam. 
Although all these approaches provide useful information, since they are based on classical 
continuum mechanics, they inherit certain disadvantages of classical continuum mechanics 
(Crocker et al., 2005). Specifically, the governing equations of the classical continuum 
mechanics incorporate spatial displacement derivatives which are undefined along the crack 
surfaces and the interfaces where the displacement field is discontinuous. By taking these 
difficulties into consideration, a non-local meshfree method proposed by Silling (2000), called 
peridynamics, can be utilized for the simulation of the polycrystalline ice. In this formulation, 
integral equations are used instead of the partial differential equations. Therefore, it is suitable 
for predicting crack initiation and propagation which may occur spontaneously. Askari et al. 
(2008) and De Meo et al. (2016) simulated polycrystalline fracture in silicon and AISI 4340 
steel, respectively, by using peridynamics for cubic crystal systems. Furthermore, Ghajari et al. 
(2014) presented a bond-based peridynamic formulation suitable for hexagonal crystal systems. 

In this paper, the polycrystalline ice model for static analysis is proposed within the framework 
of the bond-based peridynamic theory. The peridynamic parameters are obtained by equating 
the strain energy density of a material point with the classical continuum mechanics. The 
numerical results of the simulation are compared with the results obtained from FEM to testify 
the accuracy of the numerical peridynamic ice model. 

 

PERIDYNAMIC THEORY 

The peridynamic theory was first introduced by Silling (2000) using an integral equation as a 
reformulation of the interactions between material points. A concept of a horizon is introduced, 
in which the material points interact through bonds, whereas the interactions disappear outside 
the horizon. For bond-based peridynamic theory, the governing equation of a material point at 
position x in the reference configuration can be written as 

𝜌ሺ𝐱ሻ𝐮ሷ ሺ𝐱, 𝑡ሻ ൌ න 𝐟ሺ𝐮ሺ𝐱ᇱ, 𝑡ሻ െ 𝐮ሺ𝐱, 𝑡ሻ, 𝐱ᇱ െ 𝐱ሻ𝑑𝑉𝐱ᇲ ൅ 𝐛ሺ𝐱, 𝑡ሻ
ு𝐱

  ( 1 )

where 𝜌 is the mass density of the reference configuration, u represents the displacement vector 
field, b is the body force, and f represents the pairwise force function showing the force per 
volume squared that the particle 𝐱ᇱ exerts on particle x. 𝐻𝐗 is the spherical neighborhood of 
referred radius 𝛿  centered at particle x, called horizon. The relative position vector in the 
reference configuration is denoted by 𝝃 ൌ 𝐱ᇱ െ 𝐱 and the relative displacement vector at time t 



is defined as 𝜼 ൌ 𝐮ሺ𝐱ᇱ, 𝑡ሻ െ 𝐮ሺ𝐱, 𝑡ሻ. 

The peridynamic forces between two particles interacting with each other are equal in 
magnitude and in the opposite directions. These forces are along the direction of the relative 
position vector in the current configuration and can be expressed as 

𝐟ሺ𝜼, 𝝃ሻ ൌ 𝑓ሺ𝜼, 𝝃ሻ
𝜼 ൅ 𝝃

‖𝜼 ൅ 𝝃‖
  ( 2 )

As a microelastic material, the pairwise force function is derivable from the micropotential 
function 𝑤ሺ𝜼, 𝝃ሻ(Silling and Askari 2005) and can be written as 

𝐟ሺ𝜼, 𝝃ሻ ൌ
𝜕𝑤
𝜕𝜼

ሺ𝜼, 𝝃ሻ    ∀𝜼, 𝝃  ( 3 )

For a prototype microelastic brittle material proposed by Silling and Askari (2005), the pairwise 
force function is assumed to be linearly dependent on the deformation of the stretch between 
material points and can be defined as 

𝐟ሺ𝜼, 𝝃ሻ ൌ 𝑐ሺ𝝃ሻ𝑠ሺ𝜼, 𝝃ሻ
𝜼 ൅ 𝝃

‖𝜼 ൅ 𝝃‖
  ( 4 )

in which s is the stretch of the bond which can be expressed as 

𝑠ሺ𝜼, 𝝃ሻ ൌ
‖𝜼 ൅ 𝝃‖ െ ‖𝝃‖

‖𝝃‖
  ( 5 )

and c represents the bond constant, analogous to the spring constant in Hooke’s law. By 
equating the strain energy density of an individual material point from peridynamics with 
classical continuum mechanics, the bond constant c for a 2 Dimensional isotropic material can 
be written as  

𝑐ሺ𝝃ሻ ൌ
6𝐸

𝜋𝛿ଷ𝑏ሺ1 െ 𝜈ሻ
  ( 6 )

where E represents the elastic modulus of the material, b is the thickness of the plate, and 𝜈 is 
the Poisson’s ratio which is limited to 1/3 in the bond-based peridynamic model.  

ICE PROPERTIES 

Ice is a complex material consisting of fresh water ice, gas, brine, and different types of solid 
salts, and shows dependence on the temperature. A single ice crystal behaves as a strong 
anisotropic material due to its dislocation glide on the basal plane, which is perpendicular to 
the crystal hexagonal symmetry axis, named as c-axis (Gagliardini, et al., 2009). During the 
time of the ice growth, environmentally dominated variations as well as the thermal and 
deformation history lead to the formation of different grain structures of ice. The most common 
grain structures include granular, columnar, and discontinuous columnar (Timco and Weeks, 
2010). In this study, the freshwater columnar grained ice is considered. This type of ice is 
usually found in the lower layers of lakes and rivers. The ice is composed of columnar crystals 
which may elongate through the whole thickness of the level ice along the vertical direction. 
The c-axis of ice crystal are oriented randomly on the plane perpendicular to the direction of 
the columns. Thus, the columnar ice shows transversely isotropic material behaviour.  

PERIDYNAMIC MICROMECHANICAL MODEL FOR ICE CRYSTALS  

In this study, a microscopic material model is implemented to depict the behavior of the 
polycrystalline ice with random crystal orientations. In the polycrystalline structure, each grain 
is represented using bond-based peridynamics and introducing different bond properties along 



the crystal orientation direction and other directions. Thus, the peridynamic bonds are divided 
into two types as shown in Figure 1. The type 1 bonds (shown with orange colour) exist in all 
the directions and describes the interaction between material points i and all other material 
points in the horizon, denoted by the peridynamic bond constant c1. Type 2 bonds (shown with 
pink colour) only exist along the crystal orientation direction, θ. Therefore, the interaction of 
material points along the crystal orientation direction can be represented by the bond constant 
c2. The peridynamic constitutive model for the in-plane interactions between two material 
points can be expressed using Equation (4) by assigning the relevant bond constant value 
depending on the bond orientation with respect to crystal orientation. According to Oterkus and 
Madenci (2012), by equating the strain energy densities of a material point based on classical 
continuum mechanics with bond-based peridynamics under simple loading conditions, the 
peridynamic material constants c1 and c2 can be expressed by the reduced stiffness matrix, 𝑄௜௝ 
as 

𝑐ଵ ൌ
24𝑄ଵଶ

𝜋𝑏𝛿ଷ   ( 7 )

𝑐ଶ ൌ
𝑄ଵଵ െ 𝑄ଶଶ

𝛽
  ( 8 )

where 

𝛽 ൌ
1
2

෍ 𝜉௤௜𝑉௤

௠

௤ୀଵ

  ( 9 )

in which m represent the number of bonds along the crystal orientation direction within the 
horizon 𝛿 of material point i. 𝜉௤௜ is the initial length of the bond along the crystal orientation 
direction between material point q and i, 𝑉௤ donates the volume of the material point q, and b 
is the thickness.  

 

Figure 1. Horizon of a material point with a 
crystal orientation of 𝜃  

 

NUMERICAL RESULTS AND DISCUSSION 

In this section, three static problems are considered by using bond-based peridynamic 
polycrystalline ice model described above. The numerical results are compared with the results 
obtained from FEM in order to verify the accuracy of the peridynamic polycrystalline ice model. 
For the polycrystalline ice simulations, the polycrystalline structure is generated by 
implementing the Voronoi tessellation method. The reduced stiffness matrix of a single grain 
can be written as 



ሾ𝑄ሿ ൌ ൥
𝑄ଵଵ 𝑄ଵଶ 0
𝑄ଵଶ 𝑄ଶଶ 0

0 0 𝑄଺଺

൩  ( 10 )

According to Elvin (1996), the stiffness properties of a polycrystalline ice can be specified as 
𝑄ଵଵ ൌ 12.624GPa and 𝑄ଶଶ ൌ 10.328GPa. 

 

 

Figure 2. Single grain for static analysis 

Single grain under uniaxial tension 

The aim of this example is to show the accuracy of the elastic behaviour of the peridynamic 
columnar ice model. The crystal employed in this case has a length of 1.2 mm and a width of 
1.2 mm. It is discretized uniformly with 200 particles distributed along the horizontal and 
vertical directions. Three layers of virtual particles are added along the bottom edge of the plate 
and set with zero displacements to constrain the bottom edge of the plate. A vertical load of 
𝑃 ൌ 600MPa is applied as a body force and exerted to the top edge of the plate as the boundary 
condition as shown in Figure 2. The quasi-static solution is obtained by implementing the 
adaptive dynamic relaxation method. A constant horizon radius of 𝛿 ൌ 1.809 ൈ 10ିହm is used 
corresponding to 3.015 times of the grid spacing as suggested by Madenci and Oterkus (2014).   

The comparison of the horizontal and vertical displacements between the numerical results 
obtained from peridynamic and FEM simulations for a single grain with a 45-degree crystal 
orientation is shown in Figure 3 and 4. 

  

(a) Comparison of horizontal displacement field for single grain  



  

(b) Comparison of vertical displacement field for single grain 

Figure 3. Comparison of displacement fields between PD and FEM for a single grain 

 

Figure 4. Comparison of horizontal and vertical displacements along the central axis between 
PD and FEM for a single grain 

It is clear that the numerical results obtained from peridynamic simulation agree well with FEM 
results for a single ice grain under uniaxial tension loading. Therefore, the accuracy of the 
micromechanical peridynamic model for single grain is successfully verified. 

Double grain model under uniaxial tension 

In this section, double grain model with crystal orientations of -45 and 45 degrees are 
considered with a length of 2.4 mm and a width of 1.2 mm. The number of particles distributed 
uniformly along the horizontal and vertical directions is 300 and 150, respectively. The bottom 
edge of the plate is constrained with three layers of virtually added particles. The uniaxial 
tension loading of 𝑃 ൌ 600MPa  is applied as body force on the top edge of the plate. The 
horizon radius is defined as 𝛿 ൌ 2.412 ൈ 10ିହ m, i.e. 3.015 times of the grid spacing of ∆𝑥 ൌ
0.008 mm. 

  

(a) Comparison of horizontal displacement field for double grain model 
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(b) Comparison of vertical displacement field for double grain model 

Figure 5. Comparison of displacement fields between PD and FEM for double grain model 

Figure 6. Comparison of horizontal and vertical displacements along the central axis 
between PD and FEM for double grain model 

As depicted in Figure 5 and 6, the results obtained from peridynamic and FEM show good 
agreement in horizontal and vertical displacements for double grain model. 

Static Analysis of polycrystalline ice 

The polycrystalline ice modelled in this section consists of 100 randomly oriented grains (as 
shown in Figure 7) with the same ice properties used in the former examples. The plate has a 
length of 12 mm and a width of 12 mm. The domain is discretized with uniform grids with 200 
particles distributed along the horizontal and vertical directions. Similar to the previous 
simulations three layers of virtual particles are set along the bottom edge of the plate to 
constrain the bottom edge. The top edge is subjected to a vertical load of 𝑃 ൌ 600MPa, applied 
as a body load through a volumetric region. The horizon radius is set as 𝛿 ൌ 1.809 ൈ 10ିସ m. 

As shown in Figure 8 and 9, the numerical results based on the peridynamic theory match well 
with the results obtained from FEM. Only some small difference can be observed in the 
horizontal displacement field due to the approximate properties of the bonds between two 
different grains.  

 

Figure 7. The distribution of grains in the polycrystalline ice considered for static analysis 

x 
di

sp
la

ce
m

en
t(

m
)

y 
di

sp
la

ce
m

en
t(

m
)

1112131415161718 X

Y

Z



  

(a) Comparison of horizontal displacement field for polycrystalline ice  

  

(b) Comparison of vertical displacement field for polycrystalline ice 

Figure 8. Comparison of displacement field between PD and FEM for polycrystalline ice 

 

Figure 9. Comparison of horizontal and vertical displacement along the central axis between 
PD and FEM for polycrystalline ice 

 

CONCLUSIONS  

This paper presents a study of implementing the bond-based peridynamic theory, in which the 
equation of motion is an integral formulation rather than partial differential equation and is able 
to simulate the polycrystalline ice under uniaxial loading condition. In the simulations, 
freshwater columnar ice is considered as a transversely isotropic material. All grains in the ice 
are oriented randomly on the horizontal plane and modeled by using Voronoi tessellation 
method. The peridynamic parameters for the polycrystalline ice are calculated by equating the 
strain energy density of an individual material point based on classical continuum mechanics 
with peridynamics. The displacement fields along horizontal and vertical directions obtained 
from the numerical simulations are compared with the ones obtained from FEM, showing good 
agreement between peridynamic and FEM results. Thus, the accuracy of the peridynamic 
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polycrystalline ice model is successfully verified. Since the peridynamic theory has significant 
advantages in tackling problems with discontinuities, the fracture of polycrystalline ice will be 
modeled in a future study. 
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