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ABSTRACT 

Modeling the fracture behavior of ice during mixed-mode loading is difficult. Historically, 
fracture testing in the field has focused primarily on experimental conditions such as flexural 
or tensile loading, which results in failure dominated by a single mode. Between 2014 and 2016, 
nine field experiments were performed on L-shaped cantilever beams where the deformation 
was a combination of bending and torsion. Two distinct fracture modes were recorded. In four 
of the nine cases, the failure occurred at the free end of the beam due to bending, and in five 
remaining cases, the failure occurred at the root of the beam due to torsion. Fracture paths are 
difficult to model under such conditions since they are influenced not only by geometry and 
loading conditions but also are affected by the variability of the material, including natural 
flaws present in the ice. In the current study, a cohesive zone model is applied to simulate the 
dynamic fracture processes in L-shaped beams. Evolution of the stress distribution on the 
surface of the beam is modeled for the duration of the loading process, showing how it changes 
with progressive accumulation of damage in the material, as well as the development of cracks. 
An analytical model is proposed for estimating the breaking force based on the dimensions of 
the beam, flexural and tensile strengths of the material. Dimensionless constants in the model 
are determined as the best fit for the simulation results. Finally, the experimental data obtained 
from the 2014-2016 tests are re-evaluated to infer the flexural and tensile strength of ice based 
on the proposed analytical model. 
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INTRODUCTION 

Experimental measurements of mechanical properties of ice are performed quite regularly. 
Standardized testing methods are described by Schwarz et al. (1980), and, more recently, by 
International Towing Tank Conference (ITTC) Recommended Procedures for testing ice 
properties. While there are several techniques for measuring flexural and compressive strengths, 
the only recommended method for measuring shear strength is the punch through test in which 
a hole is punched in a sheet of ice. An alternative way of investigating the shear strength was 



suggested by Murdza et al. (2016), whose method is similar to in-situ plain beam loading, but 
instead uses an L-shaped cantilever beam. In such test, a pure bend is mixed with a torsional 
load, resulting in a “complex bend” – a superposition of bending (tensile) and plane (shear) 
stresses. Such loads are common in natural motion and breakup of ice, where the failure 
criterion cannot be formulated in terms of flexural strength alone. 

Nine experiments on L-shaped cantilever beams were conducted between November 2014 and 
March 2016. The following information was recorded for each test: 

 dimensions of the beam 
 loading direction: upward or downward 
 type of ice: sea or freshwater 
 temperature and average salinity of ice 
 force-time and displacement-time curves 
 maximal indentation force and the corresponding indenter displacement 
 angle and shape of the crack 

Additionally, finite element analysis was performed to estimate the distribution of stress on the 
surface of the beam. For the constitutive model of ice, isotropic linear elastic material was 
selected. By inspecting the first and third principal stresses areas of stress concentrations were 
located. However, those areas did not coincide with the experimentally observed fracture paths. 

 

Figure 1. Dimensions of the L-shaped beam, indenter application point and two crack paths,  
which correspond to the free end fracture (shown in red color) and the fixed end fracture 

(shown in blue). 

While none of the fracture paths were the same in the experiment, their locations can be 
classified into two groups: (1) at the free end and (2) at the fixed end (Figure 1). The 
experiments and subsequent simulations showed that “in-between” option is unlikely, and 
fractures usually occur on either side of the bend. Failures at the free end are analogous to the 
experiments with plain cantilever beams, failing in pure flexure. In such a case, even if the 
shear stresses were present, the maximum recorded load corresponds to the sample strength in 
transverse bending. On the other hand, failures at the fixed end correspond to torsional failure, 
where shear strength plays the main role. 

The present work attempts to re-evaluate the obtained experimental data with the aid of the 
recently implemented cohesive zone model for ice fracture (Gribanov et al., 2018) and calculate 
the corresponding flexural and tensile strengths. Additionally, the analytical solution is 
suggested to determine whether the sample will break by flexure or torsion. The analytical 
approach may be helpful for quick estimates of the breaking force and type of failure, which 
depends on the dimensions of the beam and mechanical properties of the material. For brevity, 
beam dimensions will be presented as ordered list of the form {𝑙ଵ, 𝑙ଶ, 𝑎, 𝑏, ℎ}  with values 
expressed in meters. 



COHESIVE ZONE MODELING 

The non-linear behavior of ice was summarized by Sanderson (1988). For the processes with 
large deformations and fragmentation, researchers still struggle to formulate a suitable 
constitutive model of ice. Various approaches to modeling ice fracture include continuum 
models for material damage (Kavanagh, 2018), wing crack growth (Kolari, 2017), analysis 
based on the specific energy of fracture (Tsuprik et al., 2017), probabilistic fracture mechanics 
(Taylor and Jordaan, 2015) and cohesive zone model (Gribanov et al., 2018). The latter was 
successfully applied to analyze uniaxial compressive and tensile tests of ice samples. The Park-
Paulino-Roesler formulation (Park et al., 2009; Park and Paulino, 2013) has eight parameters 
that determine traction-separation curves of cohesive zones in normal and tangential directions. 
This flexibility allows to model damage accumulation and fracture in a wide range of materials 
including ice. 

Establishing the parameters of a CZ model is a non-trivial task. Experimental measurements of 
ice strength usually provide a single quantity, such as the maximum indentation force before 
failure. This quantity can be converted to either flexural, tensile or shear strength, depending 
on the type of the experiment. On the other hand, the CZ model requires such values as specific 
fracture energies, normal and cohesive strengths 𝜎௠௔௫ and 𝜏௠௔௫, shape coefficients of traction-
separation curves and initial slopes of these curves. Some of the required values can be 
established based on small-scale laboratory tests, but the main difficulty lies in determining the 
normal and tangential strengths of cohesive zones 𝜎௠௔௫ and 𝜏௠௔௫ based on the limited number 
of experimental results. 

The first simulation is performed on a beam with dimensions {1.05,1.95,0.55,0.55,0.56}. A 
tetrahedral mesh is created with gmsh library, with the element count of 8582 and cohesive 
zone count of 8339. In this and subsequent tests, the radius of rounding on the inner side of the 
beam is set to 0.2m (twice the size of the gap). Cohesive zones are inserted between the 
elements in the area where the fracture is expected (Figure 2). Parameters of the material and 
cohesive zones are listed in Table 1. An attempt is made to use simulation parameters that result 
in breaking forces similar to the ones observed in the field experiments. The goal for 
performing the simulation is to observe the evolution of stress distribution and to generate a set 
of data points for differing beam dimensions, keeping the material parameters fixed. 

 

Figure 2. Tetrahedral mesh for FE simulation. Cohesive zones are inserted between the 
highlighted elements. Indenter measuring 15x15 cm applies force to the free end of the beam. 



Table 1. Parameters of cohesive zones and elastic elements. 

Notation Description Value 

𝜎௠௔௫  Normal cohesive strength 120 kPa 

𝜏௠௔௫ Tangential cohesive strength 140 kPa 

𝜙௡, 𝜙௧ Mode I and II fracture energies 3 J m-2 

𝛼, 𝛽 
Shape of traction-separation 
curves (determine brittleness) 

4 

𝜆௡, 𝜆௧ 
Non-dimensional slope 
indicators in PPR model 

0.015 

𝐸 Young’s modulus 5 MPa 

𝜐 Poisson’s ratio 0.3 

𝜌 Density of the material 916.2 kg/m3 

 

The force is applied at the free end of the beam via rectangular indenter moving downwards at 
1.7 mm/s (Figure 3a). The graph of force on the indenter versus time is shown in Figure 3b. 
The initial time step is set to 0.1 s, and the adaptive algorithm decreases it to 0.1/2048 when 
needed. For brittle cylinders under torsional load the fracture usually has a helicoidal shape 
(Davis et al., 1982); in the current simulation, the fracture surface is slightly curved (Figure 
3a). The fracture surface in the simulation compares favorably with fracture surfaces observed 
in the field experiments. In one of the field tests the root part of the beam, which remained 
attached to the ice cover after the beam failure, was cut off with a hand saw and placed on the 
wooden pallet in the way that the cut surface was on the bottom, in contact with the pallet, and 
the fracture surface was on the top (Figure 3c). The fracture surface is curved and inclined; the 
distance from the beam root to the fracture surface is smaller on the bottom of the beam; the 
distance from the beam root to the fracture surface on the bottom of the beam is smaller from 
the side of a shorter lever or at the rounding B in Figure 4a in Murdza et al. (2016). Thus, the 
fact that the fracture surfaces obtained in both simulation and field experiment are almost 
identical is a good sign of the accuracy of the simulation. 

 

(a) (b) (c) 

Figure 3. (a) Resulting fracture surface. (b) Force on the indenter vs. time. (c) A typical 
fracture surface obtained in the field test. 

Evolution of the distribution of first principal stress is shown in Figure 4. At the initial stages 
of loading, two areas of high stress concentration develop (Figure 4a), where the values reach 
66 kPa. Such stress concentration is not sufficient to damage cohesive zones, whose strength 
is about twice higher. In the initial stage, the distribution of stress on the surface is similar to 
the linear elastic case. 

 



  

(a) step = 5; t = 0.50 s (b) step = 25; t = 2.40 s 

  

(c) step = 44; t = 2.53 s (d) step = 57; t = 2.54 s 

Figure 4. Distribution of the first principal stress over the top surface of the beam at 
various time steps. The units on the legends are Pascals. 

 

  

(a) step = 25; t = 2.40 s (b) step = 44; t = 2.53 s 

Figure 5. Accumulation of damaged cohesive zones, shown in blue color, and 
propagating crack, shown in red. 

First damaged cohesive zones appear on step 16 in the lower-left corner of the beam. At step 
25 about 3% of cohesive zones become damaged (Figure 5a), and stress distribution is visibly 
different from the linear case (Figure 4b). Between steps 18 and 30, the maximum value of the 
first principal stress stays around 200 kPa and starts to drop when the fracture is initiated at 
step 30; a reduction of stress concentration is then seen near the propagating crack (Figures 4c, 
5b). After the propagation is complete, the internal damage results in residual internal stresses 
(Figure 4d). 

 

ANALYTICAL APPROACH 

If the failure occurs at the free end, the process can be viewed as plain cantilever beam bending. 
The breaking force, which is determined by the flexural strength, can be approximated via 
equation for the elastic beam: 



𝐹 =
𝜎௙𝑤ℎଶ

6𝑙
, (1) 

where 𝜎௙ is the flexural strength, 𝑙 is the length, 𝑤 is the width and ℎ is the height of the beam. 
Expression (1) is derived for the fixed-end plain beam and is not expected to yield precise 
results for the L-shaped beam, where the fracture is not perpendicular to the main axis and 
torsional deformation leads to non-symmetric stress distribution with areas of high stress 
concentration. This effect is influenced by the width of the fixed-end fragment, which 
expression (1) does not include. To account for the approximate application of formula (1), a 
dimensionless coefficient 𝑘 is introduced. The length 𝑙 is taken to be (𝑙ଶ − 𝑏 − 𝑝), where 𝑙ଶ is 
the length of the free end, 𝑏 is the width of the fixed end, and 𝑝 is the point of application of 
the indenter (Figure 1). Substituting the length 𝑙 into expression (1) yields the approximation 
for the breaking force 

𝐹௣ =
𝑘𝜎௙𝑎ℎଶ

6(𝑙ଶ − 𝑏 − 𝑝)
. (2) 

In this and subsequent calculations, the indenter application point 𝑝  is 0.075 m. By fitting 
equation (2) to the results of finite element simulations, the value of the dimensionless 
coefficient was found to be 𝑘 = 0.831. It shows that the breaking force of the L-shaped beam 
is about 83.1% of the breaking force of a corresponding plain cantilever beam. 

A different approach is taken when the fracture takes place at the fixed end. In such a case, the 
loading process is a combination of torsion and bending, and both components influence the 
breaking force. The bending component can be approximated as 

𝐹 = 𝛼
𝜎௕𝑏ℎଶ

6𝑙ଵ
, (3) 

where 𝛼 is a dimensionless constant, 𝜎௕ is the bending (flexural) stress and 𝑙ଵ is the length of 
the fixed end. To estimate the torsional component, the beam is viewed as a solid rectangular 
cross-section to which a twisting moment is applied. The free end of the beam acts as a lever 
that applies torque 𝑇 = 𝐹 (𝑙ଶ − 𝑝)/𝛽, where 𝛽 is another dimensionless constant. Maximum 
shear stress on the surface of rectangular solid under torsional load is expressed as (Roark et 
al., 2012): 
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3𝑇
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Formula (4) is derived with the condition 𝑏 ≥ ℎ, where 𝑏 is the width and ℎ is the height of the 
beam. For the cases where 𝑏 < ℎ, parameters 𝑏 and ℎ must be swapped. 

Stress tensor at the surface of the fixed end is written in the form 

𝜎 = ቀ
𝜎௕ 𝜎௧

𝜎௧ 0 ቁ, (5) 

whose principal values are equal to  
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The failure criterion is formulated as 

𝜎ଵ = 𝜎௧௘௡, (7) 

where 𝜎௧௘௡  is the tensile strength on the surface, which is equal to flexural strength when  
𝜎௧ = 0. The first principal direction is specified by equation 



𝑦 =
𝜎ଵ − 𝜎௕

𝜎௧
𝑥, (8) 

where the axes 𝑥  and 𝑦  are directed along the levers 𝑙ଵ  and 𝑙ଶ . The failure surface is 
perpendicular to the first principal direction and starts from the beam root because of the stress 
concentration. If 𝜎௧ = 0 then the failure surface is parallel to 𝑦-axis and corresponds to the 
crack in the beam root in bending failure. 

Substituting expressions (3) and (4) into (7) yields 
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(9) 

Where  
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Expressions (2) and (9) agree very well with the results of the finite element simulation. That 
is, for the material with known flexural strength 𝜎௙ and tensile strength 𝜎௧௘௡, the breaking force 
of the L-shaped beam can be predicted. Expression (2) predicts the breaking force 𝐹௣ in the 
flexural mode, and expression (9) predicts the mixed-mode failure 𝐹௟. The weakest of the two 
forces determines the actual location of the crack. 

 

Comparison of the Analytical Solution with FEM Parametric Tests 

Computer simulations allow to test the strengths of beams of varying dimensions quickly. A set 
of parametric FEM studies was conducted and summarized in Table 2. Material parameters 
were the same for all tests (Table 1). Results of the parametric studies are used to establish 
parameters for the analytical expressions. 

Table 2. Series of parametric tests. 

Varying 
parameter 

Parameter name 
Parameter 
range, [m] 

Beam dimensions 
{𝑙ଵ, 𝑙ଶ, 𝑎, 𝑏, ℎ} 

Number of 
tests 

𝑙ଵ Length of the fixed end 0.9–1.3 {–, 1.7, 0.55, 0.55, 0.56} 20 

𝑙ଵ Length of the fixed end 0.9–1.8 {–, 1.6, 0.5, 0.55, 0.5} 20 

𝑙ଶ Length of the free end 1.3–3.0 {1.05, –, 0.55, 0.55, 0.56} 20 

𝑎 Width of the free end 0.3–0.6 {1.05, 1.95, –, 0.55, 0.56} 20 

𝑏 Width of the fixed end 0.15–0.85 {1.05, 1.95, 0.55, –, 0.56} 33 

ℎ Thickness 0.15–0.90 {1.05, 1.95, 0.55, 0.55, –} 30 

 



To determine the coefficients 𝛼  and 𝛽 , the best fit is found for expression (9) based on 
parametric FEM studies (Table 2). Parametric tests are separated into two fracture modes with 
the first group containing fractures at the free end (Figure 6) and the second group containing 
fractures at the fixed end (Figure 3a). The latter group is used for fitting coefficients 𝛼 and 𝛽 
in expression (9). The obtained values of the coefficients are 𝛼 = 2.758 and 𝛽 = 4.588. By 
performing a uniaxial tension simulation, the tensile strength of the simulated material is 
determined to be 𝜎௧௘௡ = 138501. 

 

Figure 6. Simulated fracture at the free end of the beam. 

The first parametric study varies the parameter l1 for beams with dimensions {–, 1.7, 0.55, 0.55, 

0.56} and {–, 1.6, 0.5, 0.55, 0.5}. Equation (9) accurately predicts the decrease of the breaking 
force with the increasing length l1. Blue lines on Figure 7 correspond to the breaking force for 
flexural failure (at the free end), but the actual fracture takes place at the fixed end with lower 
force. Results of the finite element simulations show some variability due to the randomness 
in finite element meshing, but they follow the analytical prediction. 

  

 

(a) (b)  

Figure 7. Parametric study for varying length of the fixed end. 

 

The next parametric study varies the length of the free end l2 from 1.3 to 3.0 meters, with 20 

gradations between (Figure 8a). The beam dimensions are {1.05, –, 0.55, 0.55, 0.56}. Up until 
the length of 2.19m, the beams break at the fixed end, whereas longer beams break at the free 
end. The point where the transition occurs is captured by the analytical model as the intersection 
of equations (2) and (9).  

Parametric study of the width of the free end shows that wider beams result in higher breaking 
forces, but only in the region where the fracture occurs at the free end. After reaching a certain 
width, the wide free end becomes strong enough to sustain the load, and the fracture mode 
shifts to the fixed end, as illustrated in Figure 8b. 

 



  

 

(a) (b)  

Figure 8. Parametric study for varying (a) length of the free end, (b) width of the free end. 

 

Two additional studies were conducted to verify the applicability of expression (9). Both 
studies expose the non-linear dependence between the breaking force and the beam dimensions. 
When the fixed end is narrow (Figure 9a) it fractures easily. However, the breaking force grows 
non-linearly with increasing width. After a certain width is reached, the fixed end becomes 
stronger than the free end and the fracture mode changes, which is reflected in Figure 9a. 
Varying the thickness of the sheet also has a non-linear relationship with the breaking force 
(Figure 9b). In both cases, the proposed analytical expressions (2) and (9) capture the complex 
relationship and give accurate predictions. 

  

(a) (b) 

Figure 9. Parametric tests for varying (a) width of the fixed end, (b) thickness of the sheet. 

 

Application of the Analytical Model to the Field Test Data 

The field tests performed by Murdza et al. (2016) recorded beam dimensions alongside with 
the breaking forces. By applying the proposed analytical model, additional information about 
the material can be inferred. When the fracture occurs at the free end, the flexural strength can 
be determined via equation (2). For the tests where fractures happened at the fixed end, tensile 
strength can be determined via equation (9). This data is calculated and summarized in Table 3. 

 

 



Table 3. Calculated flexural/shear strength for experimentally obtained forces. 

No. 
Ice 

Type 
l1 

[m] 
l2 

[m] 
a 

[m] 
b 

[m] 
h 

[m]  
Fmax 

[N] 
𝜎௙  

[kPa] 
𝜎௧௘௡  

[kPa] 

1 sea 1.05 1.95 0.55 0.55 0.56 6267 – 194 

2 sea 1.2 2.1 0.6 0.6 0.53 3881 – 130 

3 sea 1.2 2.08 0.6 0.65 0.6 4506 – 109 

4 fresh 0.75 1.1 0.42 0.36 0.36 2559 – 173 

5 fresh 0.68 1.15 0.4 0.44 0.36 3528 285 – 

6 fresh - 2.55 0.85 0.85 0.28 1436 231 – 

7 sea 1.3 2 0.62 0.65 0.59 6897 269 – 

8 sea 1.15 1.45 0.55 0.6 0.59 7064 189 – 

9 sea 1.57 1.22 0.9 0.57 0.59 6142 – 147 

 

DISCUSSION AND CONCLUSIONS 

The tests presented in Table 3 were performed at three different locations. Even the samples 1-
3 that come from the same site show high variability in tensile strengths, ranging between 
109kPa and 194 kPa, which suggests that the tested ice contained random inclusions that 
influence test results. Marchenko and Sakharov (2017) performed laser scanning of the 
fractured surfaces and discovered the so-called “cheese ice,” whose surface contained 
cylindrical holes. Therefore, non-homogeneous natural ice can differ in its mechanical 
properties even at the same test site. 

Performing large-scale and medium-scale tests in the field is a labor-intensive task; and usually, 
only a small number of data points are collected. Computer simulations provide more insight 
about the fracture processes, allowing to run parametric studies. In the case of the L-shaped 
beam, it may be possible to predict, to some extent, whether the beam would break at the fixed 
or free end. This approach may be useful, for example, if the goal is to perform fixed-end 
torsional fractures only. 

The proposed analytical approach has several simplifications. It does not account for the 
bending geometry of the beam and does not consider the progressive accumulation of damage. 
In comparison with the finite element modeling, however, the results are much faster to obtain, 
still providing good accuracy. 

The finite element simulation accounts for the dynamics of the process, gradual accumulation 
of damage and redistribution of the stress during the loading process. The modeled loading 
curves, the locations of the cracks and their shapes generally agree with the experimental results. 
To some extent, simulation results depend on the mesh topology, and the predicted breaking 
force may be slightly different for different mesh geometries. Another drawback of the 
simulation is that it requires significant time to compute, i.e. about 20 minutes per test. It is 
formulated in terms of normal and tangential strengths of cohesive zones, which are not 
measured directly. Analytical expressions are easier to use and may be applied to estimate the 
force and type of fracture quickly. 
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