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ABSTRACT 

This paper summarizes our recent work on mechanisms and limits for the peak ice load values 

on wide inclined marine structures. The study is based on data from two-dimensional combined 

finite-discrete element method simulations and introduces a simple probabilistic model, in 

which the ice failure takes place either by buckling or by local crushing. We demonstrate how 

the model can be used in the analysis of peak ice load events. 
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1. Introduction

The number of marine operations related to transportation, offshore wind energy, and offshore
drilling in the Arctic is increasing. A key factor in ensuring the safety and sustainability of these
operations is the reliable prediction of sea ice loads, which arise from a complex and stochastic
ice-structure interaction process (Sanderson, 1988; Daley et al., 1998; Jordaan, 2001). It has
become popular to study ice loads based on rather complicated numerical tools. We believe the
true value of the numerical models resides in careful analysis, which yields the actual insight
on ice mechanics and makes it possible to conceive reliable ice load models.

Here we introduce a rather simple approach for studying maximum peak ice load events on
inclined structures. The introduced model extends our buckling model for peak ice loads (Ranta
et al., 2018a). This model assumed that the peak ice load on a structure was limited by force
chain buckling (Figure 1) and yielded a maximum peak ice load value

F p = a
√

kEI, (1)

where a = a(χ) is a buckling-mode-dependent dimensionless multiplier, k = ρwg is the specific
weight of water (ρw is the mass density of water and g the gravitational acceleration), E is
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the effective modulus of ice, and I = h3/12 is the second moment of area of a beam having
rectangular cross-section, unit width and thickness of h.

The new model has its basis on mechanical behavior of ice while simultaneously being stochas-
tic, hence we call it here a probabilistic limit load model. We believe the probabilistic limit load
model is of use in gaining insight for the analysis of ice-structure interaction processes. Here
we only briefly demonstrate the capabilities of the model by studying the failure mode of ice
in peak ice load events on inclined structure. The work we present here is largely based on
Ranta and Polojärvi (2019), where the model is extended into a probabilistic peak ice load
algorithm and its results compared to simulation and full-scale data. We start by first describ-
ing the FEM-DEM simulations, on which the model is based on and then introduce the model
itself.

2. Methods

The model is based on 2D FEM-DEM simulations, performed with an in-house code of Aalto
University ice mechanics group. The code is based on the models described in Hopkins (1992)
and Paavilainen et al. (2009) and its results validated in Paavilainen et al. (2009) and Paav-
ilainen and Tuhkuri (2012). The ice sheet was formed by discrete elements connected with
Timoshenko beams, which were linearly elastic up to a pre-defined failure criterion Schreyer
et al. (2006), and then went through an energy dissipating cohesive softening before failure.
Discrete elements were used to treat contact interactions between the ice blocks and the ice and
the structure.

The model development was based on 350 simulations. Table 1 gives the parameters of the
simulations with Table 2 summarizing the seven simulations sets, S1. . .S7. Each set contained
50 simulations where all parameters were constant, but the initial conditions slightly differed:
An initial vertical velocity of the order of 10−12 m/s was applied at the free edge of the ice sheet
at the start of the simulation (see Ranta et al. (2018b) for details). As shown in Table 2, the
simulation sets S1. . .S6 differed from each other by the values of h and σp. Simulation set S7
had thick ice, h = 1.25 m, and a high value of 8 MPa for σp. Simulations within each set,
differing by their initial conditions only, produced different ice loading processes (Figure 2).
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Figure 1: Snapshot from a FEM-DEM simulation showing a force chain, a sequence of ice blocks in contact due
to high compressive stress, transmitting the ice load. Colors indicate the average normalized compressive stress
on the ice blocks.
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Table 1: Main simulation parameters. The parameter values were mostly chosen following Timco and Weeks
(2010).

Description and symbol Unit S1. . .S7

General Gravitational acceleration g m/s2 9.81

Ice sheet velocity v m/s 0.05

Drag coefficient cd 2.0

Ice Thickness h m 0.5, 0.875, 1.25

Effective modulus E GPa 4

Poisson’s ratio ν 0.3

Density ρi kg/m3 900

Tensile strength σ f MPa 0.6

Shear strength τ f MPa 0.6

Contact Plastic limit σp MPa 1.0, 2.0, 8.0

Ice-ice friction coefficient µii 0.1

Ice-structure friction coefficient µiw 0.1

Water Density ρw kg/m3 1010

Structure Slope angle α deg 70

Table 2: Simulation sets S1. . .S7 of this study. The able also shows the number N and the indices (ID) of the
simulations in each set. More detailed list of simulation parameters is given in Table 1.

Set IDs N h σp

[m] [MPa]

S1 1-50 50 0.5 1

S2 51-100 50 0.5 2

S3 101-150 50 0.875 1

S4 151-200 50 0.875 2

S5 201-250 50 1.25 1

S6 251-300 50 1.25 2

S7 301-350 50 1.25 8
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Figure 2: Two ice load F-records from two simulations with same parameterization but different initial conditions:
(a) F plotted against length of pushed ice, L, and (b) close-ups of the maximum peak ice load, F p, events. The
value of F p differs between the simulations. Here the ice thickness h = 1.25 m and the plastic limit σp = 1 MP.

Figure 3: Force chain transmitting a load P and one contact interface between a pair of ice blocks, an elementary
unit of the probabilistic limit load model. Blocks are of thickness h and the contact has a length of h̄.

The probabilistic limit load model, used below for studying peak ice load events, extends the
above-described buckling model by (1) supplementing it with a local crushing model and (2) by
accounting for the stochasticity in the contact geometries of the blocks belonging to the force
chains. An elementary unit of the model is a contact interface between a pair of ice blocks
belonging to a force chain (Figure 3). The blocks are in a partial face-to-face contact due to a
compressive load P. Local crushing is assumed to occur at the contact interface if P ≥ h̄σp,
where h̄ is the length of the contact interface and σp is the limit for compressive stress.

By using Equation 1 and the criterion P ≥ h̄σp for local crushing, it is simple to determine the
critical contact length h̄c, for which the local crushing event occurs with the same compressive
load as the buckling. This is given by

σph̄c = a
√

kEI ⇒ h̄c =
a
σp

√
kEI =

a

σp

√
ρwgEh3

12
. (2)

When the contact length h̄ ≤ h̄c for a given pair of contacting blocks, then the local crushing
event limits the P transmitted by them. In contrast, when h̄ > h̄c, buckling limits P.

The contact length h̄ and the ice thickness h can be used to introduce a non-dimensional contact
offset e = 1− h̄/h. When e = 0, the contact length h̄ is equal to the ice thickness h. When e = 1,
the contact length becomes zero and the force chain does not exist. The critical contact offset
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ec (Figure 3), at which the root cause of ice failure changes from buckling to local crushing is
then

ec = 1 −
h̄c

h
= 1 −

a
√

kEI
σph

= 1 −
a

σp

√
ρwgEh

12
. (3)

Using everything above, the maximum load Pm a system with one contact interface is able to
transmit can be determined to be

Pm =

a
√

kEI if e < ec (limiting mechanism: buckling)
σph (1 − e) if e ≥ ec. (limiting mechanism: local crushing).

(4)

In a peak load event occurring in an ice-structure interaction process, the e values for the pairs
of contacting blocks in force chains vary randomly. The distribution for e values is not known,
and thus, a simple triangular distribution that has its maximum at em can initially be chosen.
This distribution has a cumulative distribution function

T (e) =


0 , e < 0
(2em − e)e/e2

m , 0 ≤ e ≤ em

1 , e > em.

, where 0 < em < 1 (5)

where it is assumed that e can have a random value varying at an interval of 0 . . . em, where
0 < em < 1. (By definition, e could vary between values 0 and 1, but in the case of value
1, the model occasionally predict the maximum peak ice load to have value 0.) Relating the
randomness of the process to parameter e causes the stochasticity of the loads to be related to
the geometrical configuration of the rubble pile, which can be justifiably considered to be a
random physical property of a system consisting of still intact ice, ice rubble, and an inclined
structure.

Triangular cumulative distribution function T (e) leads to fairly simple formulas for the proba-
bilities of buckling and local crushing events. For a pair of contacting blocks and one contact
interface, the buckling event limits the load when e < ec. The probability of a buckling event
reads

p(buckles) = T (ec) = 1−
1
e2

m

em − 1 +
a
σp

√
ρwgEh

12

2 , 0 ≤ ec ≤ em & 0 ≤ em < 1.(6)

If the buckling event does not limit the load, then the local crushing event will limit it, thus

p(crushes) = 1 − p(buckles) (7)

For a force chain having n contact interfaces, it is assumed that the load limit is reached when
the system buckles or when any of the contact interfaces locally crushes. If n contact inter-
faces are assumed independent of each other and the local crushing assumed to not occur, the
probability for buckling reads

pn(buckles) =

n∏
i=1

p(buckles) = p(buckles)n. (8)

The probability that a crushing event will limit the load is given by a complement probability
of the previous equation reading

pn(crushes) = 1 − pn(buckles). (9)
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A simple way to demonstrate how the above described limit load model works, and the param-
eter effects it yields, is to consider a hypothetical peak load event caused by a pair of blocks. In
this hypothetical case, the probability of a buckling event reads

pn(buckles) =

[
1 −

a2ρwgEh
12σ2

p

]n
. (10)

This example demonstrates that the force chains formed by blocks originating from an ice sheet
with low E and/or h are more prone to buckle than the chains with blocks originating from a
sheet with high E and/or h. The model thus yields plausible results: Probability of buckling
events in ice-structure interaction process increases when ice thickness decreases (Sanderson,
1988).

3. Results and Discussion

Figure 4a shows the maximum peak ice load F p values (Figure 2a and b) from our FEM-DEM
simulations. Additionally, it shows the mean F p values with their standard deviations for the
simulations of each set, S1. . . S7 (Table 2). While the F p values from the simulations in a given
set show scatter, the mean F p values of the sets S1. . . S7 differed considerably, by up to about
500 %, mainly due to a difference in ice thickness h between the sets(Ranta et al., 2017b). The
simulations of set S7 with high σp yielded larger values than sets S5 and S6 with the same ice
thickness h = 1.25 m. The values of a, solved by normalizing the F p data of Figure 4a by
factor

√
kEI, are shown in Figure 4b. These indicate that the peak load events were related to

buckling: All mean values of a are in the same range and there is no dependency between a and
h. Nonetheless, the data shows scatter not explained by the buckling model as, for example, the
mean a value is clearly larger for set S7 having high σp.

The values of a for S7 are ideal for defining distribution for a to be used in the probabilistic
limit load model (Equation 4), as they most likely are relates to the ice failure due to buckling,
not by local ice crushing. Figure 5a shows a histogram for F p observations of set S7. The figure
also shows, and specifies, a two-parameter Gumbel distribution fitted to the a data. Figure 5b
shows the data quantiles from the same data plotted against Gumbel theoretical quantiles, with
the linearity of the data points showing that the Gumbel distribution describes the data well.

By utilizing the a value distribution related to simulation set S7, the use probabilistic limit load
model can be demonstrated. This is here done using Figure 6a-d, which shows the probabilities
pn(buckles) and pn(crushes) of buckling or local crushing failure (Equations 8 and 9), respec-
tively, limiting the peak ice load F p value. Figures 6a and b show pn(buckles) and pn(crushes)
as a function of h with σp = 1 MPa. Figures 6c and d, on the other hand, show them plotted
against σp with h = 1.25 m. All figures show the results for the number of ice floe contact
interfaces n = 4 and 8. Figures 6a and b (similarly to c and d) differ by the value of em, the
maximum contact offset, which was 0.6 and 0.8, respectively. Here a was fixed to 0.39 after
the data for simulation set S7 (Figure 6b), while the other parameters were from Table 1.

Figures 6a-d show that the probabilistic limit load model yields, not only some fairly intuitive
results, but also some less intuitive ones. The probability pn(buckles) of buckling increases
with σp and decreases with an increasing h. The first result is due to a high σp inhibiting the
local crushing, while the latter can be understood by accounting for the buckling load being
dependent on h. For a fixed σp, number of contact interfaces n has no effect on the limit for
h, at which the peak load becomes solely governed by buckling. For example, when σp = 2
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Figure 4: The values of (a) maximum peak ice load F p values from all simulations (sets S1 . . . S7, Table 2) and (b)
dimensionless a factors derived using F p data. The graphs show the mean values (Avg, solid lines) and standard
deviations (SD, dashed lines) for the data. The mean a value 0.39 of set S7 was used in plotting Figure 6

MPa, pn(crushing) vanishes with h < 0.4 m for both n. Further, pn(buckles) for fixed h or σp

is seen to decrease when n increases. This underlines the importance of understanding local
phenomena at the contact interfaces; the effect of local crushing may override the larger scale
phenomena of force chain buckling, which is easier to detect.

Figures 6c and d show an important outcome of the model: For a fixed h, soft ice (low σp)
will never fail by buckling. For example, in the case of the figures, where h = 1.25 m, the
pn(buckles) = 0 for σp < 1 MPa. This means that soft ice will never exhibit any failure mode
other than local crushing and that, consequently, (1) the mechanical phenomena limiting F p

values in ice-structure interaction differs drastically for soft and strong ice and (2) the analysis
of ice loading processes should account for this fact. We note that the values chosen for the
maximum contact offset and number of contact interfaces, em and n, respectively, have only a
very small effect on this observation.
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Figure 5: Distribution of a values for set S7 (ice thickness h = 1.25 m and high crushing strength σp = 8 MPa): (a)
histogram with fitted Gumbel distribution and (b) data quantiles plotted against the Gumbel theoretical quantiles.
The Gumbel distribution with z = (a − µ)/β had estimated parameter values µ = 0.3495 and β = 0.0705.
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Figure 6: Probabilities pn(buckles) and pn(crushes) for buckling and local crushing events, respectively (Equa-
tions 8 and 9): (a) and (b) show pn(buckles) and pn(crushes) against ice thickness h for crushing strength σp 1
MPa and maximum contact offsets em = 0.6 and 0.8, respectively, and (c) and (d) as a function of σp for h = 1.25
m and em = 0.6 and 0.8, respectively. Parameter a was fixed to 0.39, which is the mean value of simulation set S7
(Figure 4b). Graphs show curves for two different number of contact interfaces n.

4. Conclusions

This paper introduced a probabilistic limit load model, which can be used in the analysis of peak
ice load events on an inclined offshore structure. The model is based on simple mechanical
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principles, and it accounts for a mixed-mode ice failure process where the root cause of ice
failure can be due to either ice buckling or local crushing. Here we only briefly described the
model and demonstrated its use, but more details can be found from Ranta and Polojärvi (2019),
where the model is extended into an algorithm, capable of producing large amounts of virtual
ice load data that compares fairly well with full-scale observations. The probabilistic limit load
model has potential of yielding insight for the analysis of complex ice-structure interaction
processes.
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