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ABSTRACT 

Iceberg drift forecasting on tactical scales remains challenging due to the lack of accurate and 

timely data on ocean currents, winds, iceberg geometry and mass. Current operational models 

are mechanistic and require a set of constants to be additionally determined for each iceberg. 

Alternatively, statistical methods and dead reckoning have demonstrated greater performance 

up to the first 36 hours of forecasting. On the other hand, purely statistical models may not be 

able to perform in rare outlying cases. This study describes a neural network applied to iceberg 

drift forecasting, that is essentially a statistical approach. The network is trained and tested 

using iceberg drift data recorded during exploratory drilling offshore Labrador in 1979. Initial 

drift track parts, ocean currents and winds are used to train the network, and then the model is 

used to forecast 24 hours ahead. The model performance is promising and potentially can be 

improved even further given more data such as more accurate currents and winds, or additional 

inputs, for example, information about waves or sea surface gradients. 
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INTRODUCTION 

Tactical iceberg drift forecasting is still challenging after almost 40 years of development 

offshore Newfoundland. Complex bathymetry and the mixture of North Atlantic and Labrador 

ocean currents result in very dynamic environmental conditions in the vicinity of major 

offshore facilities. This in turn complicates met/ocean forecasting that directly affects iceberg 

drift modelling, because winds and ocean currents are usually the input parameters. Roughly 

speaking, predicting iceberg drift becomes a forecast built upon another forecast, which carries 

additional uncertainties. There is also a lack of accurate drift and ocean measurements caused 

by the remoteness of location and complexity of data collection methods. 

Current operational drift models are based on the momentum equation and use wind and ocean 

currents to calculate the drag forces (Kubat et al., 2005). The input for these models comes 

from large-scale gridded models, providing large uncertainties for the instantaneous 



current/wind velocities. Ocean currents and winds measured in situ are more accurate, however, 

rarely available. The currents can be estimated based on the observed iceberg drift as was done 

by Turnbull et al. (2018). Recent studies show that purely statistical ocean current estimation 

delivers lower forecasting errors than the dynamic models in case of uncertain ocean input 

(Andersson et al., 2018). 

This study demonstrates a machine learning approach to iceberg drift forecasting. It is a purely 

statistical approach that builds a model that minimizes the hindcasting error for a large number 

of observations. Then the model can be used in the forecasting mode to predict the drift several 

time steps ahead. 

The paper will briefly present the method and the data which are used to build the drift model. 

Then the forecasted trajectories and forecasting error will be presented and analyzed. It will be 

followed by a short discussion about the machine learning capabilities. 

 

METHOD 

Machine learning is a generalization for a wide range of algorithms and techniques aiming to 

classify data, predict them or recognize patterns in the data. A shallow neural network  (Rojas, 

1996) will be used in this study to perform time-series prediction. This method constructs a 

non-linear function that maps a given set of arguments onto the set of predictions. 

The method starts with some initial guess of the function and iteratively refines the guess by 

comparing the calculated function values with the known output values. The larger the error, 

the more adjustments to be made to the function. This process is called training. 

The neural network can be represented by a set of interconnected elements, (called neurons) 

grouped in input, hidden and output layers (Figure 1). The function of the input can be 

calculated in the following way. The input data samples, represented by vectors with 

components 𝑥𝑖, are used to calculate weighted sums for each element in the hidden layer and 

apply the transfer function, which is usually the hyperbolic tangent, in the form: 

𝑦𝑗 = tanh⁡(∑𝑤𝑖𝑗 ∙ 𝑥𝑖 + 𝑏𝑗
𝑖

) (1) 

where 𝑤𝑖𝑗 are the weights corresponding to i-th input component of the j-th element and 𝑏𝑗 are 

the bias coefficients corresponding to j-th element in the hidden layer. 

The output layer, in turn, calculates its own weighted sum of the values 𝑦𝑗 from all the elements 

in the hidden layer, then calculates one more weighted sum to find the prediction, as follows: 

𝑧𝑘 = ∑ �́�𝑗𝑘 ∙ 𝑦𝑗 + �́�𝑘𝑗 (2)

where �́�𝑗𝑘  and �́�𝑘  are the weights and bias coefficients in the output layer, j  and k  are now 

related to the elements in the hidden layer and the outputs correspondingly. 

Once the prediction is made for given input sample, the weight and bias coefficients are 

adjusted via gradient descent based on the prediction error. Note that the weight and bias 

coefficients have to be randomized when the network is initialized. This sequence is repeated 

iteratively for various input samples, eventually minimizing the prediction error. The number 

of times the algorithm goes through the whole training dataset is called the number of epochs. 

Applied to the iceberg drift prediction, the neural network predicts the iceberg velocity based 

on a few past iceberg observations, wind and ocean current velocities. The predicted iceberg 

velocity is then integrated to find the trajectory. 

It is assumed that the iceberg velocity has been recorded at least twice prior to the forecast. In 



addition, the wind and ocean current velocities are expected to be known at the moment of 

forecast and their 24-h forecast is available. The following input samples are constructed for 

the neural network: 

[𝑈𝑥
𝑖−1, 𝑈𝑦

𝑖−1, 𝑈𝑥
𝑖 , 𝑈𝑦

𝑖 , 𝑉𝑤,𝑥
𝑖 , 𝑉𝑤,𝑦

𝑖 , 𝑉𝑤,𝑥
𝑖+1, 𝑉𝑤,𝑦

𝑖+1, 𝑉𝑎,𝑥
𝑖 , 𝑉𝑎,𝑦

𝑖 , 𝑉𝑎,𝑥
𝑖+1, 𝑉𝑎,𝑦

𝑖+1] (3) 

where 𝑈  corresponds to the iceberg velocity, 𝑉𝑤  is the ocean current velocity, and ⁡𝑉𝑎  is the 

wind velocity. The upper index indicates the moment of time, where ⁡ 𝑖 corresponds to the 

current moment. The output samples are just iceberg velocity component at the time ⁡𝑖 + 1. 

[𝑈𝑥
𝑖+1, 𝑈𝑦

𝑖+1] (4) 

 

 

Figure 1. A schematic description of a neural network with six input values, four elements in 

the hidden layer and two output values. 

 

These samples constructed for the observed iceberg tracks and recorded met/ocean data are 

used to train the model. The trained model is used to calculate the 24h velocity forecasts by 

performing consecutive single step predictions in a loop, where the input vector is updated each 

iteration using the newly-found velocity. 

The number of epochs and the number of elements in the hidden layer are the parameters of 

the neural network. The optimal values of the parameters were selected by measuring 

performance of the network on the training dataset using their various combinations. The 

number of epochs and the number of elements in the hidden layer were found to be equal to 

200 and 10 respectively. The method was implemented using an open-source Python module 

called Scikit-learn (Pedregosa et al., 2011). 

 

DATA 

The quality and the size of a training dataset determines the performance of the model. The 

data have to be accurate and representative of what can be expected when using the model to 

forecast. The data records from the exploratory drilling program in offshore Labrador have 

been used (Woodworth-Lynas et al., 1985). 



The drilling was performed in 1979 using Pelerin and Neddril 2 drillships at the wellsite called 

Roberval K-92 (Figure 2). The well was located at 54°51'N, 55°44′W at a water depth of 269 

m. The drilling was performed in the ice-free season, although the area is known to be covered 

by sea ice for a substantial portion of the year. 

The iceberg records contain bearing and distance to icebergs from the drilling rig at hourly time 

intervals. The ocean currents measured on site were recorded hourly at 10, 25 and 50 m depths. 

Some of the current measurements were absent, therefore, the average current velocity for the 

whole water column was estimated based on the available measurements (Figure 3a). Note that 

some icebergs were drifting up to 45 km distance from the drilling rig, where the ocean currents 

could be different (Figure 4a) from those measured under the rig. In the absence of any other 

measurements, it was assumed that the measured currents could be applied to any of the 

icebergs recorded. Finally, the wind data is presented by hourly record of direction and speed 

(Figure 3b). 

 

 

Figure 2. The map showing the drill site location, bathymetry and iceberg tracks (red lines). 

 

It is possible to see that the ocean current measurements are likely to contain higher levels of 

noise than the measured wind velocities. Unfortunately, no information about the measuring 

equipment is available to assess the setup and data acquisition process. 

Some icebergs were towed in order to prevent downtime and disconnection of the drilling rig. 

The corresponding tracks have been split into separate tracks by removing the parts of 

trajectories when these icebergs were towed. 

The whole dataset consisted of 123 iceberg tracks with corresponding observed wind and ocean 

velocities. It resulted in 6809 individual data samples for training and testing. To achieve an 

unbiased performance estimate, the whole dataset had to be divided into the training and testing 

subsets. A model that is trained and tested using the same dataset may demonstrate unexpected 

performance when applied to new “unfamiliar” data. In comparison, a model that is poorly 

trained, but well-tested, is expected to underperform. This consideration resulted in the training 

data set consisting of 100 tracks (5634 samples) and the model was used in the forecasting 

mode for the remaining 23 “unfamiliar” tracks (1175 samples) to estimate its performance. 

 



 

Figure 3. a) 50 m-depth-average ocean current velocity and b) wind velocity. 

 

The iceberg drift velocity distribution is shown in Figure 4b. The average drift speed was found 

to be equal to 0.2 m/s, and the fastest iceberg drifted at 0.83 m/s. Most of the time, the drift 

speed did not exceed 0.5 m/s. A similar mean speed was found to the north-east of Greenland 

for icebergs that were not influenced by the sea ice (Yulmetov et al., 2016), while the maximum 

speed off Greenland reached a value twice as high during a storm event. This extreme value is 

also affected by the longer period of observation for the Greenland icebergs. 

 

Figure 4. a) Iceberg tracks b) the probability density function (pdf) of iceberg drift speed 

derived from binning the drift speed observations. 

 

RESULTS 

After training the model was applied in forecasting mode to the icebergs in the testing dataset. 

Given only two hours of observations (three iceberg positions) and wind and weather forecasts 

a) 

b) 



for the next 24 hours, the iceberg velocity was forecasted and integrated by making 24 hourly 

predictions in the closed loop. Note, that the met/ocean forecasts were in fact observed winds 

and currents, which makes it is a hindcasting exercise. 

Two example forecasts are shown in Fig 5 and compared to the observed trajectories. The first 

case represents the situation where the model delivers better performance. It is usually 

characterized by persistent currents and winds acting in same or similar directions. Even 

despite the high drift velocity, the forecast error remains low. 

In the second case (Figure 5b), the iceberg underwent significant change in drift direction. Such 

processes are usually hard to capture accurately by any type of the drift model, whether 

dynamic or statistical primarily due to lack of accurate local data. Although the initial drift 

reversal from east to west was reproduced to certain degree of accuracy, the model eventually 

diverted the iceberg to the east. This resulted in the opposite drift direction leading to high 

forecast error. Note, that this was the case of a slow-drifting iceberg caused by a slow ocean 

current changing direction. Given a certain level of noise in the ocean current measurements, 

in cases of low drift and current speeds the relative uncertainty is large, which leads to 

significant forecasting errors. In this case, the iceberg travelled less than half the distance than 

in the first case, but the predicted trajectory error was unacceptably large. 

 

  

Figure 5. Examples of observed iceberg trajectories and their a) good and b) poor forecasts. 

 

DISCUSSION 

The model performance can be assessed based on the average forecasting error progression in 

time. The forecasting error was calculated as the distance between the predicted and observed 

iceberg locations. 

𝛿(𝑡) = ‖�⃗�𝑜(𝑡) − �⃗�𝑓(𝑡)‖ (5) 

where �⃗�𝑜(𝑡) is the observed iceberg posit ion and �⃗�𝑓(𝑡) is forecasted iceberg position, 𝛿(𝑡) is 

essentially the forecasting error progression in time. Once averaged between multiple icebergs, 

it becomes a good estimate of the model accuracy. 

Figure 6a shows the forecasting error issued for all of the forecasts in the testing dataset. The 

thick red line is the average error. Clearly, there is large variance in the individual forecast 

performance. Some forecasts are very accurate, but there are few forecasts that are 

unacceptable and provide more than 15 km error in just 12 hours. These errors appear because 

of the model misbehavior caused, in its turn, by inaccurate data used for training. 

a) b) 



 

Figure 6. a) Forecasting error for all of the individual tracks (grey), average forecasting error 

(red). b) average performance for various drift prediction models. 

It is likely that the ocean currents measured at the drilling rig location differ significantly from 

those 35 km away.  Understanding the range limit would be valuable even for strategic locations 

of future subsea current measurements systems. The 24-h average individual forecast error, 

however, seems to demonstrate a negative trend based on the iceberg-facility distance (Figure 

7). This occurs because the forecasting error is minimized for the whole dataset at once, without 

assuming that the currents at the distance are less certain. It might be noticed that the lowest 

levels of error correspond to the bins with the highest data density, i.e. at 10-20 km or at 30-35 

km. It is suggested for future modeling to filter data samples based on the distance to the facility 

while training the model. 

 

Figure 7. Individual forecast error seems to negatively depend on distance to the facility. Red 

errorbar shows mean and standard deviation for 5 km-binned data. 

a) b) 



The performance of multiple models, including the one constructed using the machine learning 

approach, are compared in Figure 6b. The average forecasting errors presented below were 

calculated for the models applied to various datasets. All of them, however, were used to 

forecast iceberg drift in the offshore Newfoundland waters. 

Andersson et al. (2018) managed to perform a comparative analysis of multiple models applied 

to the same dataset. One of their best-performing models, vector auto regression (VAR), was 

purely statistical and delivered less than 10 km error after 24 hours of forecast (Andersson et 

al., 2019). This model predicts ocean current velocity using vector auto regression large period 

of current data derived from gridded large-scale reanalysis. Then the predicted current is used 

to predict iceberg drift velocity assuming that it is 2% of the wind velocity relative to the ocean 

current. 

A hybrid model (ACF), that calculates a correction (ancillary current) to the ocean current by 

using the moving horizon estimator and then integrates the equation of motion (Andersson et 

al., 2016), results in marginally larger error on the same dataset. 

The dynamic model of Turnbull et al. (2018) integrates the equation of motion. Unless the 

measurements are available, the ocean currents are estimated locally using a similar linear 

relationship. The model also performs drag coefficients estimation based on the observed drift. 

It was applied to 14 iceberg tracks recorded using radar and resulted in 13 km error in 24 hours. 

The CIS model (Carrieres et al., 2001) forecasts for the same icebergs, but using winds and 

currents derived from large scale models, resulted in more than twice larger errors. This was a 

clear indication of the impact of inaccurate ocean current input for the model. Note, that actual 

forecast winds were used in Turnbull et al. (2018) in contrast to this study that employs only 

the measured data, which may explain the performance difference. 

As seen from Figure 6b, the machine learning approach results in the lowest error levels overall. 

Although it might seem marginal, given the number of forecasts, the difference is statistically 

significant. 

It is of large interest to understand for each model the level of uncertainty in the input data and 

the level of uncertainty in the model itself. Given perfectly accurate input data the dynamic and 

statistical models should demonstrate comparable level of performance. 

 

CONCLUSIONS 

This study presents a new statistical approach to iceberg drift forecasting. The approach is 

based on a shallow neural network implementation. The network uses two past iceberg velocity 

records, current wind and ocean velocities and their forecasts to predict the iceberg velocity. 

The model is trained using a large iceberg drift dataset recorded using marine radar during 

exploratory drilling offshore Labrador in 1979. The model performance is estimated using a 

part of the dataset that was not used for training. 

Preliminary testing demonstrates that the model is capable of achieving on average less than 

10 km error in 24 hours. However, the individual forecasts may significantly deviate from the 

observed tracks in some cases. Most often, those are the cases when the drift speed is low and 

ocean currents are slow. It occurs due to larger relative uncertainty in the input data. 

It has also been shown that the forecasting error does not depend on the distance to the facility. 

This is the feature of the algorithm that minimizes error across the whole dataset independently 

of the distance to the current measurement point. It is suggested for the future development to 

penalize the data samples corresponding to the distant iceberg tracks during training. 

In general, it is still hard to quantify uncertainty of the input data vs. uncertainty of the model. 

In order to do so, more accurate data have to be collected offshore Newfoundland. A small 



number of strategically-placed current profilers around the major offshore developments would 

enable more precious data collection and be beneficial to many players across various 

industries. 
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