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ABSTRACT 

Depending on water depths and ice conditions, floating systems are often the preferred 

approach to drilling and production in ice-covered waters. An axi-symmetric vessel has the 

advantage of presenting the same profile to the ice regardless of ice direction. In most ice 

areas of interest, it is envisaged that such vessels would be operated with ice management to 

keep the mooring forces within acceptable levels.  

In many areas, the first-year ridge can be the most critical ice feature for loads on platforms. 

However, ice ridges can be difficult to break up into small pieces and methods to reduce the 

amount of ice management whilst still leading to acceptable mooring loads are desired.  

The primary ice management hypothesis investigated in this study is that of isolating a ridge 

from the surrounding ice sheet such that it fails by in-plane bending at low ice loads. 

A new model for the in-plane bending failure of a ridge was developed based on composite 

beam theory. Out-of-plane failure of a ridge on a downward slope was also analysed using 

bounding techniques in order to assess initial penetration of the ridge which then reduces the 

failure load for in-plane bending. This mode of failure also applies to short ridges. 

The theoretical models were compared to experimental data from model tests which are in the 

open literature.  
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NOMENCLATURE  

b – ridge width 

c - cohesion of keel rubble 

D – contact width between ridge at platform 

F – force (ridge failure force and load on platform) 

h - thickness 

hr – ridge thickness 

hk – keel thickness 

hk effective – equivalent rectangular shaped keel 

hki – equivalent solid ice thickness of keel for in-plane bending 

hcl – thickness of consolidated layer of ridge 

I – second moment of area 

L – ridge length 



M – bending moment  

s – distributed load acting between ridge and platform 

w– distributed load on back of ridge  

y – distance from neutral axis to edge of ridge 

σf – flexural strength of ice 

σkeel – effective strength of keel (flexure) 

σcl – flexural strength of consolidated 

DEFINING THE PROBLEM 

The problem addressed is that of an axi-symmetric floating moored vessel subject to the 

action of first-year ridges. It is assumed that to lower the mooring loads the oncoming ice is 

“managed”. It is further assumed in framing the problem that the primary ice management 

objective is to reduce the ice loads from first-year ridges. As in all ice management activities 

the goal would be to do the minimum ice breaking to achieve the mooring load reduction. 

Ridges themselves can be formidable ice features to break into smaller pieces. Studies have 

shown that ridge keels can have thicknesses about 15 – 20 times the level ice thickness and 

consolidated layers 1.5 – 3 times as thick as level ice. A ridge is similar to a mountain range; 

in plan view it is often sinuous, see Figure 1, but for engineering purposes ridges are 

approximated to linear features. 

 

Figure 1: Morphology of a pressure ridge 

To break a ridge across its width can require significant forces and ice management effort. So 

one potentially easier tactic may be to isolate the ridge from its surrounding ice sheet and 

encourage the ridge to fail by in-plane bending as it advances on a moored platform. This is 

shown conceptually in Figure 2. 



 

Figure 2: In-plane bending of a ridge 

 

IN-PLANE BENDING 

Load to fail 

Referring to Figure 2, the bending moment at the centre of the beam is given by 

M = wL
2
/8 – sD

2
/8     (1) 

For balance of forces, 

  s = wL/D      (2) 

Therefore, 

  M = wL(L-D)/8     (3) 

The next step is to relate M to the in-plane bending capacity of the ridge. If the ridge was 

made of a homogeneous material, the engineer’s theory of bending applies, 

  M = σf I/y      (4) 

For a solid rectangle with width b and thickness h, 

  I/y = b
2
h/6      (5) 

Combining (3), (4) and (5), the value of w to create a centre crack failure is given by, 

  w = 1.33b
2
hσf/(L(L-D))    (6) 

The load at failure (F) is then, 

  F = wL = 1.33b
2
hσf/(L-D)    (7) 

Equivalent cross section 

First-year pressure ridge keels are often of trapezoidal or triangular shape as depicted in 

Figure 3. The first step in developing an equivalent cross section is to idealize the keel into a 

rectangle to give the same I value about the Z-Z axis. If the keel was a triangle it can be 

shown that hkeffective = 0.25hk. Most ridges will be trapezoids with varying bottom width 

which would increase the 0.25 value in the relationship. In this work we will use a value of 

0.5 (the results are not very sensitive to this value). 

 

 



 

Figure 3: Effective rectangular keel creating a composite beam (for same Iz-z) 

 

The next step is to convert the composite beam of solid ice rectangle and a rubble rectangle 

into an equivalent solid beam for bending about the z-z- axis (Figure 4) 

 

Figure 4: Solid ice beam equivalent to the composite beam 

 h = hcl + hki       (8) 

For bending about the Z-Z axis, shear compatibility is not needed between the two materials, 

so the equivalent thickness of the keel as solid ice is simply based on flexural strengths. 

Hence, 

h = hcl + (σkeel/σcl/)hk effective    (9) 

These strength values are “flexural” or tensile. Little is known about the tensile strength of 

ice rubble, but some work has been done at field scale; (reported in Croasdale, 2012). For full 

scale keel rubble, a typical high value is about 25kPa. (Note where c values (cohesion) for the 

keel are reported, it is assumed that σkeel = 2c). 

Example 

The prior theory is now applied to a typical extreme first-year ridge. Assume the ridge has a 

4m thick consolidated layer; a keel depth of 30m and a flexural strength of 350kPa. The hk 

effective is 15m and the equivalent total rectangle of solid ice for bending about the z-z axis 

is given as 

h = 4 + (25/350)15 = 4 + 1.1 = 5.1m 

Continuing the example; if the ridge is 85m wide and 500m long and there is initially no 

penetration prior to bending failure (so that D in Eq. 7 is zero), then the load on the platform 

(F) when such a ridge fails by in-plane bending is  

 F = 1.33(85
2
)(5.1)(350)/500 kN = 34.3MN 



A more modest ridge as might be seen operationally with a 2.5m thick CL layer and a 15m 

keel would give a load of 15MN. 

It is of interest to compare these numbers to out-of-plane failure which would occur as the 

other potential failure mode – shown on Figure 5. This is complex failure mode involving 

both downward flexural failure of the consolidated layer as well as downward passive 

shearing of the keel rubble. 

 

 

 

Figure 5: Downward (out-of-plane) flexural failure of a ridge 

The methodology for ridge loads on sloping structures is still uncertain (no guidance in ISO 

19906). One bounding approach is to use the method in ISO 19906 for keel action on a 

vertical structure than add the bending failure load from the consolidated layer. To apply this 

approach, we also need to specify the geometry of the vessel. The example chosen is one with 

a water line diameter of 80m, a slope angle of 45 degrees and a slope depth below the ice line 

of say 20m. Applying the keel method in ISO 19906 for Example 1 gives a load of 92MN. 

(Note this also recognizes the potential for a plug failure of the keel (see Palmer and 

Croasdale, 2013; Chapter 5). Applying the downward bending theory to break the 

consolidated layer gives 25MN for a total ridge load of 118MN. This compares to the 34MN 

for in-plane bending. In the second example of a 15m keel the out-of-plane load is 60MN 

compared to 15MN for in-plane bending.  

Allowing for section loss due to penetration 

The in-plane loads derived so far assume that the full cross section at the point of maximum 

bending is intact. This will not be the case because the interaction process will start with A 

and B in Figure 5. In plan view it will look like Figure 6. 

The scheme to calculate the true load is shown conceptually in Figure 7. 

 



 

Figure 6: Initial out-of-plane ridge failure reduces the ridge cross section as the load builds up 

 

 

 

Figure 7: The scheme to find the controlling load 

Load vs penetration – Example 

The prior example which gave an in-plane load of 34MN is extended to include the effect of 

penetration on reducing the cross section. (Hence the breaking load according to the scheme 

shown in Figure 7). 

The ultimate out-of-plane failure loads are as previously calculated, but for this calculation 

the load vs penetration is also needed. This is shown in Figure 8 for the keel using the 

previously referenced method. The controlling load is 92MN. To this is added the load to fail 

the consolidated layer in downwards bending. 



 

Figure 8: Load vs penetration and keel failure load  

The estimated load to fail the consolidated layer (downwards) is calculated using the updated 

method of Croasdale et al (2016). As previously noted for Example 1, for a consolidated layer 

of 4m the failure load is 25MN. The build-up of this load with penetration will not be smooth 

but for the sake of this exercise it is assumed that the maximum value is attained at the same 

penetration as the maximum keel load (based on Dolgopolov). The sum of these components 

with penetration can now be compared to the in-plane failure load with reduced cross section 

as penetration proceeds. The comparison plot is shown in Figure 9: 

 

Figure 9:   Ridge loads vs penetration. The controlling load is where the two curves cross 

The plot in Figure 9 shows that the in-plane ridge failure load is reduced from 34MN to 

26MN when loss of cross section due to penetration is accounted for.  

 

 

 

 



 

 

COMPARISON WITH EXPERIMENTAL DATA 

Fenz et al (2016) report on a series of model tests to investigate the process of managed 

ridges acting on an axi-symmetric moored floating vessel. To quote from the paper”Three 

fixed factors were investigated: ridge length and ridge width to assess whether managed 

ridges behave as beams and whether keel depth influences managed ridge loads. The test 

program was conducted at HSVA in 2014 and consisted of 4 ice sheets and hence 12 ridges. 

With a basin width of 10m, each ridge consisted of a long fragment (5.5m), a short fragment 

(2.5m) and a 2m section on which ice properties were tested. There were, therefore, 24 ridge 

fragments available, permitting a full factorial design with three replications of each 

combination. Narrow ridges were 1.2m and wide ridges were 1.8m.  Shallow ridges had keel 

depth of 25cm and deep ridges had a keel depth of 40cm. All had a consolidated layer 

thickness of 3.0cm. Keel rubble dimensions were 10cm x 10cm x 2.5cm for all cases. The 

response quantity of interest was the measured load at the time of global ridge failure.” 

The model used was an axisymmetric floater with 45deg downward breaking cone at the waterline. 

It was moored to an underwater carriage that was advanced using the main carriage. The mooring 

system consisted of a four line system equivalent to a more substantial system that could be 

employed on an Arctic drilling vessel. The model itself consisted of two pieces: an inner structure 

and an outer shell connected to each other by a six component load cell. The mooring lines were 

attached to the inner structure, which permitted measurement of both the applied external ice load 

(measured by the load cell) and the static component of the response measured by the fairlead load 

cells. The model diameter at the water line was 1.8m. 

Fenz et al (2016) did not try to compare the results with any particular theoretical models, but they 

provided in the paper the experimental data which allows this. Table 1 shows the experimental data 

and the results of calculating the in-plane ridge failure loads as described in this paper. 

Table 1: Experimental data and predictions for in-plane ridge failure 

 

 

In-plane

0.5hk N N Long Short 

Test m m m m m m kPa kPa m m m kPa kN/m Predicted Measured Prediction only only

b penetration hr hcl hk hk effectiv e σf c h L D σ w load load factor

1010 SNL 1.20 0.48 0.220 0.029 0.191 0.10 15 0.16 0.0310 5.50 1.59 15 0.0154 84 180 0.47 0.47

1020 SNS 1.20 0.48 0.220 0.029 0.191 0.10 15 0.16 0.0310 2.50 1.59 15 0.1451 363 238 1.52 1.52

1030 SNL 1.20 0.48 0.210 0.029 0.181 0.09 17 0.58 0.0353 5.5 1.59 17 0.0189 104 113 0.92 0.92

1040 SNS 1.20 0.48 0.210 0.029 0.181 0.09 17 0.58 0.0351 2.5 1.59 17 0.1835 459 191 2.40 2.40

2010 DNS 1.20 0.48 0.250 0.032 0.218 0.11 18 0.15 0.0338 2.5 1.59 18 0.1878 469 235 2.00 2.00

2020 DNL 1.20 0.48 0.250 0.032 0.218 0.11 18 0.15 0.0338 5.5 1.59 18 0.0198 109 226 0.48 0.48

2030 SWL 1.80 0.72 0.315 0.032 0.283 0.14 18 0.34 0.0374 5.5 1.76 18 0.0506 278 243 1.15 1.15

2040 SWS 1.80 0.72 0.315 0.032 0.283 0.14 18 0.34 0.0374 2.5 1.76 18 0.5621 1405 353 3.98 3.98

2050 DWS 1.80 0.72 0.320 0.032 0.288 0.14 20 0.28 0.0360 2.5 1.76 20 0.6128 1532 283 5.41 5.41

2060 DWL 1.80 0.72 0.320 0.032 0.288 0.14 21 0.28 0.0358 5.5 1.76 21 0.0574 316 328 0.96 0.96

3010 SNL 1.20 0.48 0.280 0.033 0.247 0.12 25 0.28 0.0357 5.5 1.59 25 0.0291 160 139 1.15 1.15

3020 SNS 1.20 0.48 0.280 0.033 0.247 0.12 25 0.28 0.0357 2.5 1.59 25 0.2752 688 174 3.95 3.95

3030 DWL 1.80 0.72 0.355 0.033 0.322 0.16 35 0.51 0.0377 5.5 1.76 35 0.0990 544 449 1.21 1.21

3040 DWS 1.80 0.72 0.355 0.033 0.322 0.16 38 0.51 0.0373 2.5 1.76 38 1.1907 2977 480 6.20 6.20

3050 DNS 1.20 0.48 0.265 0.033 0.232 0.12 42 0.51 0.0358 2.5 1.59 42 0.4597 1149 284 4.05 4.05

3060 DNL 1.20 0.48 0.265 0.033 0.232 0.12 42 0.51 0.0358 5.5 1.59 42 0.0486 267 226 1.18 1.18

4010 DWS 1.80 0.72 0.365 0.032 0.333 0.17 19 0.36 0.0382 2 1.76 19 2.4202 4840 353 13.71 13.71

4020 DWL 1.80 0.72 0.365 0.032 0.333 0.17 19 0.36 0.0382 5.5 1.76 19 0.0557 306 405 0.76 0.76

4030 SWS 1.80 0.72 0.235 0.032 0.203 0.10 17 0.39 0.0367 2.5 1.76 17 0.5171 1293 308 4.20 4.20

4040 SWL 1.80 0.72 0.235 0.032 0.203 0.10 16 0.39 0.0370 5.5 1.76 16 0.0446 245 205 1.20 1.20

4050 DNL 1.20 0.48 0.265 0.032 0.233 0.12 20 0.20 0.0344 5.5 1.59 20 0.0216 119 159 0.75 0.75

4060 DNS 1.20 0.48 0.265 0.032 0.233 0.12 21 0.20 0.0342 2.5 1.59 21 0.2221 555 251 2.21 2.21

(Note: h = hcl + hkeffective*(2c/σf) Average 2.72 0.93 4.51

Std Dev 2.90 0.27 3.22



The first point to note is that the tests were for two different lengths of ridges (L in the table), 5.5m 

(long) and 2.5m (short). If we look at the comparison of predicted vs measured loads, it is clear that 

the in-plane bending predicted load does not apply to short ridges. This is not surprising and in a 

personal communication it was indicated that in-plane bending failures only occurred in tests with 

the long ridges. Separating these tests we see that for long ridges, the average prediction factor is 

0.93 (1.0 being perfect) with some scatter which is not unexpected in physical tests.  

Clearly for short ridges another model needs to be used. The out-of-plane failure model has already 

been discussed. This was applied to the short ridges in the experimental series and the results are 

shown in Table 2.  

Table 2: Out-of-plane ridge failures: Measured vs predicted loads 

 

There is a general over-prediction with the average prediction factor of 1.45. This is not surprising 

because the keel load method used was that in ISO 19906 for a vertical structure. In other recent 

work (Croasdale et al, 2018), various models for ridge loads on sloping structures have been 

examined and developed with comparisons made to Confederation Bridge loads. It was shown in 

that work that the use of the ISO 19906 keel model applied directly to a sloping structure will in 

general be conservative.  

OTHER LIMITING MECHANISMS 

Of course there are other limiting mechanisms that can apply in managed ice. An overview is 

given in Palmer and Croasdale, (2013) as well as in Croasdale et al, 2009. The potential loads 

due to short ridges calculated in this paper would unlikely be realized if some ice 

management of the level ice on the other side of the ridge had been accomplished. Even just 

releasing it from the surrounding ice could lead to the formation of a ridge building 

mechanism which would create a limiting driving force type situation. Creation of small floes 

or brash ice in the level ice would also limit to forces on the ridge fragment. 

In the model tests the long ridges were 5.5m long and the short ridges 2.5m long. Taking a 

notional 50
th

 scale which would make the vessel 90m in diameter, the long ridges would be 

275m long and the short ridges 125m. If the surrounding ice was 1m thick and the ISO 19906 

formula is used with an R value of 2000, the ridge building load would be 18.5MN compared 

to the out-of-plane load calculated earlier for an extreme ridge (30m keel) of 118MN and a 

60MN load for ridge with a keel of 15m. If the surrounding ice was 1.5m thick the ridge 

building load on the 125m ridge length would be 31MN. If the ice was managed into small 

floes then these acting on the 125m ridge fragment should be less than about 15MN even 

with some ice pressure (Croasdale et al, 2009). 

 

Test hcl hk σf c L
Keel 

passive

Final CL 

bending

Predicted 

total
Measured

Prediction 

factor

m m kPa C m N N N N

1020 SNS 0.029 0.191 27 0.16 2.50 131 73 204 238 0.86

1040 SNS 0.029 0.181 33 0.58 2.5 356 77 433 191 2.27

2010 DNS 0.032 0.218 26 0.15 2.5 130 70 200 235 0.85

2040 SWS 0.032 0.283 27 0.34 2.5 338 76 414 353 1.17

2050 DWS 0.032 0.288 29 0.28 2.5 391 70 461 283 1.63

3020 SNS 0.033 0.247 33 0.28 2.5 245 84 329 174 1.89

3040 DWS 0.033 0.322 47 0.51 2.5 713 106 819 480 1.71

3050 DNS 0.033 0.232 47 0.51 2.5 389 87 476 284 1.68

4010 DWS 0.032 0.333 27 0.36 2 533 63 596 353 1.69

4030 SWS 0.032 0.203 24 0.39 2.5 283 75 358 308 1.16

4060 DNS 0.032 0.233 29 0.20 2.5 178 79 257 251 1.02

Avg 413.36 286.36 1.45

STD 172.80 82.47 0.44



CONCLUSIONS  

A possible optimum method of reducing loads due to first-year ridges acting on a floating 

system is to separate them from the surrounding level ice. This encourages them to fail by in-

plane bending at lower loads compared to other failure modes. The longer the ridge the lower 

the resulting load so chopping up ridges into smaller lengths can actually lead to higher 

managed ridge loads. 

A method is developed based on composite beam theory to estimate the in-plane failure loads 

for a range of ridge parameters. The method has been verified against experimental model 

test data. 

It is appreciated that some ridges in nature are short, these will not fail by in-plane bending 

(as demonstrated in the model tests).However, separating them from the surrounding  level 

ice can also help in encouraging ridge building upstream of the ridge at lower loads than if 

the ridge is frozen into the surrounding ice. 
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