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ABSTRACT 

 

Automatic ice drift detection from remote sensing data is a straight forward process in the arctic 

where revisit time by polar orbiting satellites is quite small and it is possible to rely on one 

satellite to define change detection algorithms and extract drift data. But if we consider sub-

Arctic regions intervals of about three days minimum between images of the same satellite 

makes automated drift detection obsolete for majority of cases due to changes in wind regime 

and intermittent drift events. Therefore, multi-platform remote sensing data needs to be used 

to reduce the gaps. In this project we exploit deep learning capabilities in order to estimate ice 

drift between image from different sensors, by learning their similarities with Siamese Neural 

Network. 
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INTORODUCTION 

One of the common tasks in sea ice monitoring operations is to measure ice drift from satellite 

images. Although it is not as accurate as drift buoy data, for example, it gives information on 

ice drift distribution over vast areas. ICEMAN.KZ has developed and algorithm of detecting 

unique floes and tracking their displacement through the season (Kadranov et al, 2017) and 

implemented in their ice charting processes both for drift evaluation at current time and for 

forecasting in the near future based on forecast model data. This study is targeted to improve 

performance and timeliness of previously implemented techniques by automating floe 

detection using multiple satellite platforms thus increasing number of observations and 

reducing human interpretation bias. 

Many research studies were conducted in order to automatically estimate ice motion from two 

consecutive images, for example, by computing and matching key points (Muckenhuber 2016). 

These studies were mostly conducted between images of the same platform which makes sense 

in the Arctic as majority of satellites being polar orbiting revisit the same area at relatively 

short intervals allowing to assess drift correctly. Comparison of images from different sensors 

is less common, but, nonetheless, is important for sub-Arctic areas such as the Northern 

Caspian Sea being located between latitudes of 47°N and 44°N, where revisit of the same 

satellite can be up to 4-5 days. With such intervals between images detected changes become 

obsolete due to changes in wind regime and intermittent drift events. 

This project is targeted to explore capabilities of deep learning to detect similar objects in 

consequent temporally images that were acquired with different sensors. Convolutional Neural 
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Networks (CNN) to find corresponding areas between Synthetic Aperture Radar (SAR) sensor 

data -Sentinel-1and multispectral Sentinel-2 images were used to assess applicability of the 

approach before introducing it into routine operations. 

CONVOLUTIONAL NEURAL NETWORKS BACKGROUND 

CNN show high performance on the vision-based tasks (such as classification, detection, 

segmentation, etc.). Classic CNN consist of input layer, convolutional layers, fully connected 

layers, loss function and output. Weights of the network are optimized with backpropagation – 

error (or loss) between output of the network is iteratively compared with expected output 

(label) by computing gradient of the loss function. The input data is fed to the network in small 

parts (batches). One iteration when full dataset passed forward and backwards the network is 

called Epoch. More detailed description of CNNs is discussed by Karpathy (2018). 

Detection of the same floe between 2 images from different sensors was perceived as deep 

metric learning problem. Similarities were estimated with Siamese Neural Network, which 

consist of 2 identical subnetworks that share weights and output similarity score between two 

inputs. Experience with deep learning algorithms usage in sea ice monitoring applications is 

scarcely available in public, but this architecture showed good performance in such problems 

as face recognition (Varior et al. 2016). Pseudo Siamese Neural Network (non-shared weights) 

was applied by Hughes et al. (2018) for comparison of SAR and Optical data to detect 

corresponding patches and suggested most optimistic way forward within this study. 

Siamese Neural Network was trained by showing the network pairs of Sentinel-1 and Sentinel-

2 images that cover the same ice area and expecting to output low dissimilarity and then 

showing pair of the same Sentinel-1 image but with Sentinel-2 image that covers different ice 

area and expecting to output higher dissimilarity. The network was expected to learn optimal 

parameters to be able correctly measure dissimilarities on the unseen samples with sufficiently 

high number of training samples. Since one of the main conditions for CNNs good performance 

is quality and quantity of the labelled data, training set of images consisted of observations 

within stationary ice areas. This way manual matching of the corresponding floes was avoided 

increasing speed of training data generation. Consequently, trained network was tested over 

mobile areas. Geographically samples were collected over the North-East Caspian Sea giving 

opportunity to verify results with vast archive of observations generated in company for 

internal use. 

TECHNICAL SET-UP 

Technically the project was set up utilizing only free open source data and software.  

Vast archive of Sentinel satellite data since 2014 was downloaded from Scientific hub and 

ensured enough samples both for training of networks and for further tests of applicability in 

operations. VV polarization data from Sentinel-1 acquired in IW mode (the only mode 

available for the Caspian region) with GRD processing and only Near Infrared band for 

Sentinel-2 were used to maintain simplicity of interpretation and reduce amount of image 

processing in the scope of this project. The images were scaled to 8 bit depth. 

Images were post-processed with GDAL tools using Python scripts developed internally to 

adjust imagery for ice charting processes with no human interference during operations. QGIS 

was used for GIS based processing such as reprojection and visualization of intermediate 

results with algorithms clearly described by QGIS Development Team (2009) in software 

documentation.  

CNN was trained on “Google Colaboratory” notebook that utilizes Tesla K80 GPU using Keras 



API for Tensorflow framework. Training time, with final architecture (see Figure 1) on the 

whole training set was 330 seconds per epoch. Inference with trained model was performed on 

the laptop CPU Intel Core M-5Y10 0.8Ghz, the comparison time was about 0.7 seconds per 

pair. 

Siamese Neural Network 

Siamese neural network consists of 2 identical CNNs that share architecture and weights. Each 

network is trained by interchangeably feeding it with positive (images are the same) and 

negative (images are different) pairs. The output of the last layers (N-dimensional vector) of 2 

CNNs are sent to contrastive loss function. This function outputs higher loss if Euclidean 

distance between the vectors is large for positive pairs or if the distance is small for negative 

pairs. Therefore, network tries to learn such parameters that would minimize distance between 

positive pairs and maximize it between negative pairs.  

The Euclidean distance between output of the last layer of 2 subnetworks is used as 

dissimilarity measure to asses accuracy during training and validation stage and to detect floes 

during testing. 

Siamese Neural Network with 2 subnetworks was built for this project based on VGG 

architecture by Simonyan et al (2014), one the most used CNNs for image classification, that 

consist of 5 convolutional blocks and 2 fully connected layers (see Figure 1). The last 

convolutional layer was eventually removed due to the heavy overfitting resulting in lack of 

generalization. It gave good performance on training set, but poor results during validation. 

 

Figure 1. Architecture of Siamese Neural Network used in this project. Convolutional block 

that was removed in the final version of the network is bounded with dashed box. 

Data Preparation 

The training data was generated by splitting areas of stationary ice captured with Sentinel-1 

and Sentinel-2 images on same or nearly same day into tiles with dimensions of 200x200 pixels 

(which spatially corresponds to 2000x2000 meters) with stride of 100 px. Figure 2 illustrates 

example of tile generation. The same figure shows samples of Sentinel-1 and Sentinel-2 images 

with the same distinctive ice floes to illustrate applicability of tile sizes compared to the size 

of tracked floes. 

Areas of stationary ice were used to simplify generation of positive pair. Negative pairs are 

generated by randomly picking a tile form Sentinel-2 set (that excludes tile from reference 

location). 



In total there were 7369 pairs of tiles generated. However, some of these tiles only included 

regions with homogeneous conditions, for instance, open water or flat ice without distinct floes 

that could be detected for analysis. Additional step of removing these areas from training and 

subsequently from analysis significantly reduced computation time at later stages. These tiles 

were removed from the set by thresholding mean squared error (MSE) between original image 

and the same image smoothed with gaussian filter with size of 10x10. By analyzing results, all 

tiles with MSE below 0.03 were considered uniform and filtered out from the set for analysis. 

Only 5603 pairs remained as final set for training and validation as result of filtering in such 

way. 

 

Figure 2. Left: Example of tile generation: H - Height, W - Width, s- Stride; Right -

 Enlarged samples of Sentinel-1 and Sentinle-2 NIR Band tiles 

Training and Validation Routines 

80% of tiles within the final set (4482 pairs) were randomly selected for training and the rest 

20% were used for validation (1121 pairs). Tiles of the training set were used as input for the 

model. Validation set was used to assess performance of the model on the unseen samples. 

Finally, once the architecture of the network was chosen and hyperparameters were tweaked, 

and, thus, the model was trained, to test the model on detection of drifting ice, another set of 

tiles was created from areas with mobile ice containing Sentinel-1 and Sentinel-2 which were 

acquired at least one day apart. 

Areas with mobile floes from the test set were manually picked and then sent to the model for 

detection. The results were then qualitatively compared with manually detected during other 

projects (Kadranov et al, 2017 being part of it). 

NETWORKS ASSESSMENT 

Accuracy of correct classification was used for the initial evaluation based on the following 

logic. If the output dissimilarity was below or equal 0.5 then the pair of tiles was considered 

similar indicating detected floes, if above then the pair was considered different. Accuracy was 

calculated as ratio of correct classifications to the total number of pairs.  

The first network was trained for 50 epochs with batch size of 32 pairs, making 4482/32 steps 

per epoch to define the most suitable architecture. Figure 3 shows accuracy ratings for networks 

with 5 and 4 convolutional blocks  

Network with 5 convolutional blocks showed good performance on the training set, reaching 

almost 100% accuracy in the last epochs. However, validation accuracy stopped increasing 



after 20th epoch and was around 75% for the rest of the assessment.  

Networks without 5th convolutional block showed slower growth in training accuracy, but 

difference between validation and training accuracy was negligible. Training and validation 

accuracy reached 78% and 77% respectively on the last epoch. 

 

Figure 3. Left - Accuracy of the network with 5 convolutional blocks, showing overfitting; 

Right: Accuracy of the network with 4 convolutional blocks. 

Network with 4 convolutional blocks was chosen as a final model based on the initial 

assessment above and was trained for 100 epochs. On the last epoch training and validation 

accuracies were 84% and 83% respectively as illustrated in Figure 4.  

 

Figure 4. Accuracy of the network with 4 convolutional blocks, 100 epochs. 

Training model with such accuracy was expected to detect similar floes in majority of cases 

between two images. However, certain number of erroneous detections can be expected after 

processing making it a requirement for visual check of results before further steps are taken in 

drift assessment. Results of successful and erroneous detections are shown below. 

TRAINED MODEL PERFORMANCE TEST 

Performance of the trained model on detecting the similar floe was then tested on images over 

mobile areas. To capture larger area tiles for this test were taken with spatial extend of 4x4 km, 



making 400x400 px size and with stride of 2 km (200 px), and then resized to fit the input size 

of 200x200 px. Sentinel-1 was selected as reference image imitating a previous day during 

operations. Consequent Sentinel-2 image and corresponding areas of Sentinel-1 were then split 

into tiles for analysis within a search radius depending on wind conditions during the period 

between the two images. Each tile of Sentinel-2 as pair with reference Sentinel-1 tile was sent 

to Network for analysis. Pairs with minimal dissimilarity that were then chosen as a prediction 

of resulting detected floes would identify drifted objects for the following analysis of drift 

between them. 

Figures below illustrate some of the resulting detections. The network has shown ability to 

identify similarities under varying conditions. Example illustrated in Figure 5 shows 

conglomerate of thicker floes drifting away from stationary ice border towards areas with 

smaller ice concentrations. This scenario of unconstrained drift was most optimistic as suggests 

minimal deformation to floes. Indeed, visually observed floes in blue box on Sentinel-2 (right) 

were found similar to those in red box on Sentinel-1 on the left indicating the area they 

originated from near stationary ice border.  

 

Figure 5. Example of successful floe detection (perfect match). Left - Sentinel-1 Image. blue 

dots are centroids of the tiles red bounding box - reference tile. Right: Sentinel-2 image 

acquired 1 day after the Sentinel-1, red dots –disimilarities with reference tile of Sentinel-1 

measured by the network. Blue box – minimal dicimilarity from the reference tile. 

Figure 6 below shows similar drift scenario but with slightly worse match of automatic 

identification by network to manual observation. Although the error did not exceed one tile 

making detection results useful for further analysis within tolerable proximity to real objects 

identified for consequent delineation of floes and drift vector calculations.  



 

Figure 6. Example of successful floe detection (tolerable error). Left - Sentinel-1 Image. blue 

dots are centroids of the tiles red bounding box - reference tile. Right: Sentinel-2 image 

acquired 1 day after the Sentinel-1, red dots –dissimilarities with reference tile of Sentinel-1 

measured by the network. Blue box – minimal disimilarity from the reference tile, green box 

manual detection. 

In rare cases, ice floes prediction was totally incorrect, with model returning minimum 

dissimilarity several tiles away from the actual location of the floe. Figure 7 shows green box 

detected by operator and blue by network not even closely matching each other. Although these 

errors are spotted on the next stages of drift evaluation and do not affect results filtering them 

out increases processing time. Further training of model with more data fed into the network 

and making it more sophisticated with adding augmentation of source imagery with added 

iterations of processing will significantly reduce number of errors during detection.  



 

Figure 7. Example of failed prediction. Left - Sentinel-1 Image. blue dots are centroids of the 

tiles red bounding box - reference tile. Right: Sentinel-2 image acquired 1 day after the 

Sentinel-1, red dots –disimilarities with reference tile of Sentinel-1 measured by the network. 

Blue box – minimal dissimilarity from the reference tile, green box manual detection. 

DISCUSSION 

Although the detection of the ice floes was not always correct, the experiments showed that the 

Siamese Neural Network has high potential for multi-sensor ice drift estimation as proven with 

results of Sentinel images comparison for several cases in this project. Full-scale regional 

testing of this algorithm is yet to be conducted during further operational usage. Experience 

gained during this project has identified several important conclusions that will facilitate 

further research of fully automatic floe detection with future projects. 

So, models trained on stationary ice areas has shown ability to detect floes over mobile areas. 

This proven ability saves significant time during model training stages by removing manual 

input to show similarities between images. 

Demonstrated model’s ability to detect floes with spatial resolution differing from the training 

set is quite important as well. Training and validation performed on the tiles with spatial 

resolution of 2x2 km took significantly longer time compared to consequent experiments with 

4x4 km tile resolution. This reduction in processing time makes the whole concept of floe 

identification timely for operational use giving results shortly after image acquisition. 

Accuracy of model at this stage still requires human interference to identify obviously 

erroneous detections. However, further training sessions and improvements can lead to better 

model performance. Additional training sets will also improve the model by achieving 

robustness to morphological changes of the floes occurring during displacement through areas 

of compaction or when splitting into smaller floes.  

Current model has proven good performance on direct wind driven events of ice drift. However, 

changing wind direction and effects of currents during longer periods than one day lead to 

rotational displacements of floes and cannot be easily detected with current structure. Further 

improvements, however, are possible with introduction of augmented images with added 



rotation, mirroring and similar distortions. 

In addition to these enhancements discussed above this method of identifying floes needs more 

training and validation with other satellite data such as Sentinel-3, MODIS, Landsat and 

different SAR platforms to increase number of possible displacement observations with 

increasing number of cases. However, this analysis is more challenging with introduction of 

higher variability of input image parameters such as different spatial coverage and pixel 

resolution that is in most cases is not as easy to compare as with similar between Sentinel-1 

and 2. 
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