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ABSTRACT 

This paper analyzes experimental data collected during the HYDRALAB+ project: Loads on 

Structure and Waves in Ice (LS-WICE). Several data analysis techniques, including Fast 

Fourier Transform, Upward Zero-Crossing, Genetic algorithm, and Dynamic Mode 

Decomposition (DMD) are applied. The results show that the wavelength under ice in the 

analyzed data does not deviate from the open water wavelength. More importantly, we show 

that ice floes bend with the same frequency as the incoming waves. In addition, we identify the 

dominant flexural-mode shapes and the associated nonlinearities. Multivariate analysis 

techniques, such as Proper Orthogonal Decomposition (POD) and Smooth Orthogonal 

Decomposition (SOD) methods are applied to the spatial and temporal responses of ice floes. 

The results show that modes based on the POD and SOD methods have similar spatial and 

temporal shapes. Applying both methods reveals that most of the motion energy is captured in 

a two-dimensional subspace of the phase space, where the sum of the first two modes 

correspond to more than 95% of the total system response. Lastly, the results of the multivariate 

analysis indicate that weak nonlinearity exists in the flexural motions of ice floes induced by 

waves. 

KEY WORDS: Proper Orthogonal Decomposition; Smooth Orthogonal Decomposition; Ice 

floe; Flexural modes. 

INTRODUCTION 

In the recent decades, the Arctic region is attracting more attention, because of global climate 

change, technological progress, improved infrastructure, geopolitical shifting and increasing 

appetite for rich carbon-hydrogen resources in this area (Bennett, 2016). Driven by these 

factors, one of the growing research fields is wave-ice interaction.  

Surface gravity waves and sea ice interact with each other in a complex manner and create a 

feedback system. Waves break up the ice (Kohout et al., 2014), contribute to ice melting  

(Squire, 2019), and push the ice around. Concomitantly, sea ice attenuates and scatters the 

waves (Bennetts et al., 2007, Collins III et al., 2015). There are many other physical processes 

involved such as vortex shedding (Rabault et al., 2019), overwash (Skene et al., 2015), ice 

bending (Meylan et al., 2015) and inelastic collisions of ice floes (Li and Lubbad, 2018).  In 

the present study, we focus on wave induced bending of ice floes. 



We investigate a dataset from the project: Loads on Structure and Waves in Ice (LS-WICE)  

(Tsarau, 2017). This project includes laboratory experiments that continued for three weeks, 

and were performed at Hamburg Ship Model Basin (HSVA) in 2016. The project goals were 

to study (1) wave attenuation/dispersion in different arrays of discrete ice floes (Cheng et al., 

2017), (2) ice floe collisions induced by wave forcing (Li and Lubbad, 2018), (3) ice fracture 

due to wave actions (Herman et al., 2017), and (4) ice-structure interaction under wave 

conditions (Tsarau et al., 2017). In this paper, we apply a number of data analysis techniques, 

including Fast Fourier Transform (fft), Upward Zero-Crossing, Genetic algorithm, and 

multivariate analysis techniques, specifically, Dynamic Mode Decomposition (DMD), Proper 

Orthogonal Decomposition (POD) and Smooth Orthogonal Decomposition (SOD). Results 

from the Genetic algorithm show that wavelength under ice does not deviate from the open 

water wavelength. Results from the fft, the Upward Zero-Crossing, the Genetic algorithm and 

the DMD methods indicate that ice floes bend with the same frequency as the incoming wave 

frequency. The POD and SOD methods extract similar temporal and spatial modes where the 

first two modes capture more than 95% of the total response, and the successive two modes 

show weak nonlinearity. 

EXPERIMENTAL SETUP  

The experimental setup is shown in Figure 1 (a). The wave maker on the left extended through 

the width of the ice tank (10 m). Regular waves were generated and they propagated in the 

positive x-direction. On the right-hand side of the tank (around 70 m from the wave maker), 

parabolic beach was installed to dissipate the incoming waves. The ice cover consisted of 15 

and 6 ice floes in the x and y directions, respectively; in addition to a large floe adjacent to the 

beach. The dimensions of the small ice floes were 3 m and 1.63 m along x- and y-direction, 

respectively. These floes were produced by cutting an intact ice using electrical saws. The ice 

cover spanned from 20 m to 69 m as shown in Figure 1 (a). The mean thickness of the ice was 

31.1 mm. Young’s modulus of the ice cover was measured as 41~77 MPa. The trim tank (see 

upper part of Figure 1 (b)) was an open water area for the generated waves to develop fully. In 

total, 12 reflective markers (see Figure 1 (a) and Figure 1 (c)) were placed on the upper surface 

of the ice. The 3-dimensional orthogonal translational positions of these markers were tracked 

by Qualisys cameras. In addition, wide-angle GoPro Silver camera was fixed on the sidewall 

to monitor the motions of the ice floes. In this paper, we investigate the responses of the ice 

floe that is highlighted by light magenta color, denoted as #A, in Figure 1 (a) and Figure 1 (c). 

We utilize the test run with the following wave parameters: wave frequency of 0.5 Hz and wave 

height of 25 mm. 

DESCRIPTION OF THE ANALYSIS METHODS 

Calculating wavelength through optimization 

We obtain the phase difference needed for estimating the wavelength by using the genetic 

algorithm in MATLAB, i.e. the MATLAB function called ga. This algorithm solves an 

optimization problem, which is formulated as: 
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where 3, 4, 5k   here to circumvent multiple modes at edges of ice floes (for brevity, see the 

arguments in Sakai and Hanai (2002) and Cheng et al. (2018)); and superscript '0'  indicates 

initial position of markers. Wavelength L  is determined by taking the mean of 2kL  . 

 

Figure 1. Experimental setup. (a) Schematic of experimental setup. (b) Image of trim tank 

(upper part) and ice cover (lower part). (c) Image showing the dimensions of individual ice 

floe and close view of ice floes instrumented with reflective markers. Light magenta color 

boxes in (a) and (c) highlight the ice floe #A that is of interest. Purple line in (a) illustrates the 

view area of GoPro Silver camera.  Makers in (c) are numbered from #3 to #8 along the wave 

propagation direction. 

Dynamic Mode Decomposition (DMD)  

DMD is a way of decomposing time varying data (Taira et al., 2017, Schmid, 2010). In 

combination with the method of delay (Packard et al., 1980) with large time window, it 

resembles Fourier transform (Broomhead and King, 1986, Kutz et al., 2016). Amplitudes of 

dynamic modes and eigenvalues in the DMD method directly relate to power spectrum and 

frequency (Kutz et al., 2016). In this paper, we use the algorithm given in Tu et al. (2014) and 

Kutz et al. (2016). 



Let 
1n

k

z   represent the measurement time history that has zero mean. The embedding 

dimension used here is / 2m n    , which gives a DMD spectrum that resembles the amplitude 

spectrum best. 

Proper Orthogonal Decomposition (POD) 

POD is also known as Singular Value Decomposition (SVD), Principal Component Analysis 

or Karhunen-Loève Expansion (Epps and Techet, 2010, Feeny and Kappagantu, 1998, Taira et 

al., 2017).  

 

For synchronous measurements at r  positions, measurement data matrix is 1 2( , , , )rZ z z z . 

In POD, we are looking for a orthonormal matrix Ψ  that maximizes the variance of projections 

of Z on columns of Ψ . This optimization problem can be solved by applying economical SVD 

as: 
T
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where columns of orthonormal matrix 
n rU   represent temporal modes; square of diagonal 

singular value matrix r rΣ   gives proper orthogonal values (POVs) along diagonal, and 

columns of eigenvector matrix r rΨ are proper orthogonal modes (POMs). 

Smooth Orthogonal Decomposition (SOD) 

In SOD, we search for an orthonormal matrix Ψ  to maximize the variance and smoothness of 

projections of Z onto columns of Ψ  (Chelidze and Zhou, 2006). In this study, we apply the 

SOD method following Chelidze (2014) and Gedikli et al. (2018). For this optimization 

problem, we need the first time derivative matrix of Z  in addition to data matrix Z .  

In SOD, Smooth Orthogonal Modes (SOMs) represent spatial mode shapes. Smooth 

Orthogonal Coordinates (SOCs) represent temporal mode shapes. Smooth Orthogonal Values 

(SOVs) represent the most dominant modes in the system based on their spatial distribution 

and smoothness of the SOCs. 

Some important properties of SOD are: (I) columns of SOMs are linearly independent from 

each other; (II) columns of SOCs are orthogonal to each other but vector amplitude of each 

column is not one.  

POD and SOD resemble each other where projections of Z onto POMs in POD are equivalent 

to SOCs in SOD. POMs are orthogonal to each other, and as mentioned above SOMs are 

linearly independent of each other. Therefore, POMs are comparable to orthogonalized SOMs 

when linear modes considered (Chelidze and Zhou, 2006). 

PRE-PROCESSING OF THE DATA 

Locating the steady-state time interval  

We select a steady-state time interval from motion time histories of 3z  and 8z  as shown in 

Figure 2. This interval is chosen to satisfy two conditions, specifically, 1) it should ensure that 

there is no corruption from reflected waves, and 2) it should represent the best possible portion 

of the signal for steady-state. The detailed steps are as follows:  



(1) Use the distances between the wave maker and the markers, and group velocity of waves 

at open water with intermediate water depths to determine the time of arrival (TOA) of waves 

at each marker. 

(2) Calculate the traveling time (TT) of round-trip for waves from the location of each marker 

to the beach, by taking the ratio between the corresponding trip length and the group velocity. 

(3) Add TT to TOA at each marker position to determine the last time instant (LTI) that is free 

from reflected waves for each marker.  

(4) Select steady-state time interval between maximum of TOAs and minimum of LTIs. 

Since marker #3 and marker #8 are to the left-most and right-most edges of the ice floe #A, 

steady-state time interval chosen using the above steps guarantees the steady-state condition 

and ensures that there is no effect from the reflected waves. 

 

Figure 2. Identified steady-state time interval that is free from contamination of reflected 

waves (indicated by pair of black dashed lines). Light blue and orange lines represent marker 

#3 and #8, respectively. Data of marker #8 are shifted by 60 mm to aid visualization. 

Distance between markers 

The markers were placed with regular spacing of approximately 50 cm along the x-direction. 

To determine the longitudinal distance between these markers, we take the difference of the 

average x-position measurements of the markers before TOA. 

RESULTS 

Wavelength 

Using the MATLAB function ga, viz., Eq. (1), we fit the measured vertical oscillations at each  

marker with a sinusoidal function. Figure 3 (a) shows such a fitting for marker #6 as an example. 

This process gives us the phases of oscillations for the different markers. By combining this 

information with the distance between these markers, and applying Eqs. (2)-(4), we find the 

estimate of the wavelength to be 6.16 m. This result is in agreement with wavelength in open 

water condition. For this test run, Cheng et al. (2018) confirmed that wavelength remains the 

same in the presence of ice cover as in open water. They reached this conclusion by using data 

from pressure sensors (see Figure 5b in Cheng et al. (2018)). 

Vertical oscillations of markers   

In addition to the MATLAB function ga, we apply another three methods, i.e., fft, DMD and 

Upward Zero-Crossing analysis to determine the oscillation amplitudes and frequencies of the 



different markers on ice floe #A. As illustrated in Figure 3 (b), ga, DMD and Upward Zero-

Crossing method yield similar estimates of the oscillation amplitudes. On the other hand, the 

fft method seems to underestimate the oscillation amplitudes. This can be attributed to the finite 

length of data (truncated by rectangular window), which limits the frequency resolution, 

resulting in a spread of the energy content (see the width of the base of the peak in Figure 3 

(b)). This is a known caveat of fft and referred to as spectral leakage. In Figure 3 (d), it can be 

seen that markers oscillate with the same frequency as waves. 

As shown in Figure 3 (c), the oscillation amplitude at each marker on floe #A is larger than 13 

mm. However, the target wave amplitude in open water is 12.5 mm. In addition, we would 

expect to see wave attenuation when the waves are propagating under ice. This is based on full-

scale observations as in Sutherland and Rabault (2016), Li et al. (2017), and Collins III et al. 

(2015). In an attempt to explain this inconsistency, we examined the measurements from the 

two nearby pressure sensors shown in Figure 1. Analysis results show that the wave amplitude 

at these two positions are 8.5 mm and 8.7 mm, respectively. These values are obtained after 

subtracting the hydrostatic water pressure and the effects from submergence on the dynamic 

water pressure. The reason of this apparent discrepancy between wave and ice-oscillation 

amplitudes is not investigated here any further and is highly recommended to be considered for 

future research.  

 

Figure 3. Oscillation amplitude and frequency of markers. (a) Vertical motion of marker #6 

(blue line) and fitted motion (red dashed line) by Genetic algorithm. (b) Vertical oscillation 

amplitude and frequency of marker #6. Black line is amplitude spectrum obtained by fft. 

Magenta circles represent DMD spectrum. Blue triangle denotes result from Upward Zero-

Crossing analysis. Red square denotes result from Genetic algorithm. (c) Oscillation 

amplitudes of markers #3 to #8. Red line with squares represents results from Genetic 

algorithm. Black line with right triangles denotes results from fft. Magenta line with circles 

indicates results from DMD. Blue line with triangles denotes results from Upward Zero-

Crossing analysis. (d) Oscillation frequency of markers #3 to # 8; the same as in (c) plus that 

cyan line represents target frequency of generated waves. 

Proper Orthogonal Value (POV) and Smooth Orthogonal Value (SOV) 

We examine first the POVs and SOVs to determine the dominant modes in the interaction 

where they represent the energy in the system similar to Gedikli et al. (2017). As shown in 

Figure 4, the variation of the POVs and SOVs can be categorized into three distinct regions. 

Note that the SOV-based categorization results in more distinct identification (Figure 4 (b)).  



From Figure 4 (a), it is seen that the sum of the first two modes account for 98.20% of the 

energy. Along with the successive two modes, the percentage rises to 99.70%. Figure 4 (b) 

reveals that the first two modes are similarly smooth. The same applies to mode pairs in the 

other two regimes. 

 

Figure 4. Proper orthogonal values (POVs) and smooth orthogonal values (SOVs). (a) POVs 

in the scale of logarithm with base 10. (b) SOVs in the scale of logarithm with base 10.  

Temporal Modes (TMs) and Spatial Modes (SMs) 

The POD and SOD methods result in similar TMs as illustrated in Figure 5. Figure 5 (a) and 

(b) show that the first two TMs appear to be sinusoidal. The first two TMs from SOD also 

resemble those from POD. Figure 5 (c) and (d) suggest that nonlinearity is embedded in the 

third and fourth modes. Modes in Figure 5 (e) and (f) represent the noise in the system, which 

accounts for less than 0.5% energy in the system (see Figure 4).  

 

Figure 5. Temporal modes (TMs). Blue line denotes U  from POD and red dashed line 

represents SOC from SOD. (a) First mode. (b) Second mode. (c) Third mode. (d) Fourth 

mode. (e) Fifth mode. (f) Sixth mode.  

In Figure 6, we compare the SMs identified by the POD and SOD methods. These two methods 

give similar results. First two modes (Figure 6 (a) and (b)) look similar which resemble quarter 

of a sinusoidal shape. The third and fourth mode (Figure 6 (c) and (d)) resemble the first and 

second harmonic eigenmodes, respectively. Last two SMs (Figure 6 (e) and (f)) cannot be 



simply justified as the third and fourth harmonic eigenmodes, because their energy content is 

minimal (see Figure 4), and also the limited length of ice floe does not allow these motions to 

fully develop. 

 

Figure 6. Spatial modes (SMs). Blue line denotes POM and red dashed line represents 

orthogonalized SOM. (a) First mode. (b) Second mode. (c) Third mode. (d) Fourth mode.  (e) 

Fifth mode. (f) Sixth mode. 

We perform spectral analysis on the TMs from the POD method to identify principal 

frequencies in each mode. Although we also find principal frequencies using SOD, we only 

illustrate the POD results for brevity. 

Oscillation frequencies of first two modes match with the incident wave frequency as shown 

in Figure 7 (a) and (b). This suggests that combination of first two modes represents the 

dominant response due to the incident waves. The successive two modes have dominant 

frequency that are almost twice the wave forcing as shown in Figure 7 (c) and (d). These 

frequencies represent the collision frequencies that were identified in Li and Lubbad (2018) 

when considering collisions occur at both sides of the ice floe along x-direction. Figure 7 (e) 

and (f) show that the last two modes are contaminated by noise, which can also be seen in 

Figure 5. Results as shown in Figure 4, Figure 5 and Figure 7 suggest that first four modes are 

the most dominant modes, which account for more than 99 % of the total energy in the system’s 

response; therefore, we hereafter only consider these four modes. 

 

Figure 7. Spectral density of TMs using POD. (a) First mode. (b) Second mode. (c) Third 

mode. (d) Fourth mode. (e) Fifth mode. (f) Sixth mode. 



We now apply a low-pass filter on the third and fourth TMs from the POD method. From Figure 

7 (c) and (d), it is seen that no frequency content higher than 5 Hz has significant energy. 

Therefore, we select the cut-off frequency as 5 Hz. 

Figure 8 illustrates the phase plane plots of the first four modes. It shows that first two modes 

form a limit cycle. Combinations of the second versus the third mode, and the second versus 

the fourth mode result in phase portraits that are similar to some combinations of crescent and 

figure eight type of responses. These results are more clear when the time evolution of these 

modes are investigated (not shown). 

 

Figure 8. Phase plane plots of TMs from POD. (a) First mode versus second mode. (b) 

Second mode versus third mode. (c) Second mode versus fourth mode. (d) Third mode versus 

fourth mode.   

Reconstruction using the POD and SOD methods 

We now employ the first four modes obtained from the POD and SOD methods to reconstruct 

the response (i.e., the vertical oscillation of floe #A). Using normalized root mean error 

(NRMSE) as metric, we show that errors of reconstruction by POD and SOD are negligible as 

shown in Figure 9. Note that the root mean square error is normalized by standard deviation of 

the vertical displacement measurement to calculate NRMSE here. In general, POD and SOD 

produces similar reconstructed signals using the first four modes. 



 

Figure 9. Reconstruction error for vertical displacement of each marker when using the first 4 

modes of POD and SOD. (a) Marker #3. (b) Marker #4. (c) Marker #5. (d) Marker #6. (e) 

Marker #7. (f) Marker #8. Blue line shows results using POD and red dashed line represents 

results using SOD. Blue and red text denote NRMSE when using the first 4 modes of POD 

and SOD to reconstruct signals.  

DISCUSSIONS  

Rank of trajectory matrix Z in our case is not one, due to different oscillation phases of 

markers. Therefore, the SOD method is applicable for the measurements presented in this paper 

as in Chelidze and Zhou (2006). On the other hand, oscillation amplitudes of the markers (see 

Figure 3 (c)) are different and POVs are distinguishable (Figure 4 (a)). Therefore, POD is also 

suitable for analyzing data given in this paper (Chelidze and Zhou, 2006). 

Figure 6 (a) and (b) show that the first two SMs resemble each other. In addition, corresponding 

first two TMs form a limit cycle on phase plane (see Figure 8 (a)). Thus, the first two dominant 

modes are actually one mode (Chatterjee, 2000). This is supported by Taira et al. (2017), who 

stated that traveling waves (in our case, waves propagating under ice cover) need two POD 

modes to be represented. 

Because noise is high dimensional (Abarbanel et al., 1993), noise in generally is confined in 

the higher subspaces/modes in POD (Taira et al., 2017). Figure 5 (e) and (f) together with 

Figure 7 (e) and (f) illustrate the noise embedded in the system. Furthermore, corresponding 

SOVs that represent the most dominant modes are relatively small (see Figure 4 (b)) where 

these two modes are contaminated by noise.  

CONCLUSIONS  

In this paper, we characterize the response of ice floes in regular waves by analyzing data 

acquired during the LS-WICE project. By applying fft, Genetic algorithm, Upward Zero-

Crossing analysis and DMD, we find that the ice floe of interest oscillates with a larger 

amplitude than waves, but with the same frequency as waves.  

To identify the vibration modes of ice floes, we employ two multivariate analysis techniques, 

i.e., the POD and SOD methods. These two decomposition methods give similar temporal and 

spatial modes. Results from the POD and SOD methods suggest that the first two subspaces of 

the phase space (the first two modes that represent traveling wave) are dominant. The 

aggregated energy captured by these two modes are more than 95%. The third and fourth mode 

illustrate nonlinearity and oscillate at a frequency approximately twice of the incoming waves.  

When first four POD and SOD modes are used to reconstruct the signal, the resulting errors 

similar to each other and they are negligible.  



As a result, we show that the POD and SOD methods are two effective methods to extract 

dynamic spatiotemporal characteristics for wave induced bending of ice floes. Here, we present 

the analysis of data from only one test run. In the near future, more comprehensive analysis 

results that include data from remaining test runs will be presented. 
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