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ABSTRACT 

Hibler (1979) describes a sea ice model in which the internal ice stress and strain rate are related 

by means of a viscous-plastic sea ice rheology. A large sea ice area is modelled as an isotropic, 

continuous and homogeneous material (Hutchings, Jasak et al. 2004). This model considers 

pack ice as a single homogenized material with constant ice density, where ice thickness, ice 

coverage and ice velocity are the main variables. An existing large-scale numerical model, 

based on Hibler's model, has been implemented in the computational fluid dynamics software 

OpenFOAM by Bogaers, Rensburg et al. (2018). This paper reports on the modification to the 

large-scale OpenFOAM model to develop a small-scale sea ice model, considering a material 

composition consisting of separately pancake ice and frazil ice with distinct properties. The 

thermodynamics of sea ice is neglected, since only small time periods are modelled. Pancake-

frazil and pancake-pancake ice interactions are analysed. Wind and ocean current are applied 

(Mehlmann and Richter 2017). Average stress, strain rate and viscosities are obtained. 
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INTRODUCTION 

Sea ice plays a significant role in the global climate and covers approximately 10% of the 

earth's surface (Wilchinsky and Feltham 2006). Understanding sea ice dynamics and 

thermodynamics results in better sea ice predictions and therefore a better comprehension of 

the Antarctic marginal ice zone (MIZ) (Herman 2016). Large-scale sea ice models have been 

developed to operate successfully at length scales of 10 to 100 kilometers-domain size. Finer-

scale models of sea ice dynamics are scarce (Dansereau, Weiss et al. 2016), in particular with 

respect to the characteristic pancake ice found in the Antarctic MIZ. 



Sea ice has a major impact on the global climate and life of marine organisms in and below the 

ice (Massom and Stammerjohn 2010). The ice acts as a layer between the ocean and atmosphere 

and dominates the heat, gas and momentum exchange  (Thorndike, Rothrock et al. 1975). 

Large ocean heat losses occur due to leads, which are cracks in the ice cover. Relatively warm 

water below the thin ice layer is exposed to the cold atmosphere (Kantha 1995). The extent to 

which ice has an impact on heat loss, depends on the distribution of the ice coverage, thickness, 

dynamics, ice type and snow coverage (Massom and Stammerjohn 2010). This paper focusses 

on the dynamics of sea ice, considering specifically the solid and fluid mechanics of sea ice.   

 

Several sea ice models have been developed in the past, the majority of which are large-scale 

models. One of these models is developed by Hibler, which is largely recognized as the 

standard sea ice dynamics model. In this model, the viscous-plastic sea ice rheology relates the 

internal ice stress and strain rate. A large fractured sea ice area is modelled as an isotropic, 

continuous and homogeneous material (Hutchings, Jasak et al. 2004). In the case of 

consolidated ice with constant ice density, the main variables are ice thickness, ice coverage 

and ice velocity. Most large-scale models represent an ice-covered area at length scales of 10 

to 100 kilometers (Bogaers, Rensburg et al. 2018). This is the scale at which the material laws 

have been developed and verified. The response at these levels, given the chosen models, tend 

to be representative. These models use a smeared model approach, in which several different 

types of ice are modelled as one homogeneous material, representing averaged quantities. Sea 

ice models on a smaller scale are scarce (Dansereau, Weiss et al. 2016), in particular with 

respect to the characteristic pancake ice found in the Antarctic MIZ. For this reason, we have 

developed a small-scale model, where the pancake ice and frazil ice are treated with distinct 

material properties. 

 

Sea ice modelling has been helpful in gaining a better understanding of the polar regions, 

however, most of these models are based on the Arctic. Research in the Arctic is more 

accessible, since weather conditions are less severe, and it is less remotely located. Hence, 

understanding sea ice behaviour in the Antarctic MIZ still requires some attention. 

 

LARGE-SCALE MODEL 

The viscous-plastic sea ice model is based on the model previously developed by Coon (1980). 

He replaced the elastic behaviour in the constitutive equation by the viscous behaviour to 

eliminate the need to update the geometry when computing the strain (Feltham 2008). Only 

thick and thin ice are considered, which includes open water, with an ice concentration, A, 

quantified by an area fraction between 0 and 1 where the latter stands for 100% ice coverage, 

often referred to as consolidated ice. 
 

Using an inelastic material law with an elliptical yield curve, shown in Figure 1, Hibler proved 

that the relationship between average stress and strain rate is linearly viscous, including a 

pressure term. According to Feltham (2008) this behaviour is caused by large variations 

between the strain rate and the mean strain rate. 

 

The momentum equation is written as 

𝑚 (
𝜕𝑼

𝜕𝑡
+ (𝑼 ∙ 𝛁)𝑼) = 𝝉𝑎 + 𝝉𝑤 − 𝑚𝑓𝒌 × 𝑼 − 𝑚𝑔𝛁𝐻 + 𝛁 ∙ 𝝈, (1) 

 



 

Figure 1. Viscous-plastic yield curve by Hibler (1979). 

which links internal and external forces. The wind, current, Coriolis and pressure gradient 

represent the external forces. The internal reaction forces represented by the Cauchy stress 

tensor, 𝝈, have a highly non-linear dependency on a variety of sub-scale interactions (Bogaers, 

Rensburg et al. 2018). 𝑼 represents ice velocity and 𝑚 the mass of ice. Wind and ocean current 

stress vectors applied to the ice are represented by 𝝉𝑎  and 𝝉𝑤, respectively. 𝑓 is the Coriolis 

parameter and 𝒌 represents a unit normal vector to the surface of the ice. 𝑔 and 𝐻 represent 

gravitational acceleration and sea surface dynamic height, respectively. 

 

Both wind and current stress are written as 

𝝉𝑎 = 𝜌𝑎𝐶𝑎|𝑼𝑎|(𝑼𝑎cos𝜃𝑎 + 𝒌 × 𝑼𝑎sin𝜃𝑎), (2) 

𝝉𝑤 = 𝜌𝑤𝐶𝑤|𝑼𝑤 − 𝑼|((𝑼𝑤 − 𝑼)cos𝜃𝑤 + (𝑼𝑤 − 𝑼)𝒌 × 𝑼𝑤sin𝜃𝑤), (3) 

where variables 𝑼𝑎 and 𝑼𝑤 respectively represent wind and ocean current velocities. The 

material parameters for air and water are their densities 𝜌𝑎 and 𝜌𝑤, respectively, drag 

coefficients 𝐶𝑎 and 𝐶𝑤, and turning angles 𝜃𝑎 and 𝜃𝑤. 
 

The ice mass is determined by 𝑚 = 𝜌𝑖 ℎ, where 𝜌𝑖 and ℎ represent ice density and ice thickness, 

respectively. In the case of open water, ice thickness equals zero, which results in an ill-posed 

and thus unsolvable momentum equation. Hence, a lower limit has been introduced on the sea 

ice thickness of ℎ = 0.5m. However, this is rather unrealistic, and therefore Bogaers, Rensburg 

et al. (2018) considered zero ice thickness, which in this case requires solving for a sea ice 

velocity which satisfies the condition 𝝉𝑎 + 𝝉𝑤 = 0, which can be achieved by solving for a 

water shear stress of 

𝝉𝑤 = −𝜌𝑤𝐶𝑤|𝑼𝑤 − 𝑼|cos𝜃𝑤𝑼

+ 𝜌𝑤𝐶𝑤|𝑼𝑤 − 𝑼|((𝑼𝑤)cos𝜃𝑤 + (𝑼𝑤 − 𝑼)�̂� × 𝑼𝑤sin𝜃𝑤). 

(4) 

The viscous-plastic sea ice rheology describes the relationship between the sea ice stress tensor 

components, 𝝈, the sea ice strain rate tensor components, �̇�, and the internal ice strength 𝑃, 

governing its compressibility. The viscous-plastic constitutive law is given as 

𝝈 = 2𝜂�̇� + 𝑰 [(𝜁 − 𝜂)tr(�̇�) −
𝑃

2
], (5) 



which describes the homogeneous and isotropic behaviour of sea ice. The strain rate can be 

written in terms of the ice velocity 𝑼, 

�̇� =
1

2
(𝛁𝑼 + (𝛁𝑼)𝑇). (6) 

All terms in equation (5) linked to η represent the deviatoric part of the constitutive law. The 

𝜁 term represents the spherical part of the rate-dependent part of the constitutive law. The 𝑃 

term quantifies rate-independent compressibility behaviour. Both strain rate dependent 

viscosities, namely the deviatoric and spherical contributions, are coupled as given below: 

𝜁 =
𝑃

2Δ
,                          𝜂 =

𝜁

𝑒2
, (7) 

The strain rate dependent parameter Δ is defined as 

Δ = [(𝜀1̇1
2 + 𝜀2̇2

2 )(1 + 𝑒−2) + 4𝑒−2𝜀1̇2
2 + 2𝜀1̇1𝜀2̇2(1 − 𝑒−2)]

1
2, 

(8) 

where the ratio between the principle axis of the elliptical yield curve is represented by 𝑒 and 

𝜀1̇1, 𝜀2̇2 and 𝜀1̇2 denote the Cartesian components of the strain rate tensor.  

 

As strain rates approach zero, the viscosity tends to infinity. To avoid this, a lower limit of the 

effective strain rate is imposed, Δ = 2 ∙ 10−9 s-1. The ice does not behave completely as a rigid 

solid, but rather slowly creeps (Hunke and Dukowicz 1997).  

 

The ice strength parameter 𝑃 is given as 

𝑃 = 𝑃∗ℎ𝑒−𝐶(1−𝐴), (9) 

which depends on ice thickness, ℎ, ice coverage, 𝐴, and two empirical constants, 𝑃∗ and 𝐶. The 

transport of ice thickness, ℎ, and ice coverage, 𝐴, are defined by the advection transport 

equations as 

𝜕ℎ

𝜕𝑡
+ 𝛁 ∙ (ℎ𝑼) = 𝑆ℎ ,                              

𝜕𝐴

𝜕𝑡
+ 𝛁 ∙ (𝐴𝑼) = 𝑆𝐴, (10) 

where 𝑆ℎ and 𝑆𝐴 represent thermodynamic source terms, which are set to 0 for the purposes of 

the current study. 

 

SMALL-SCALE MODEL 

The primary aim of this work is to develop a small-scale model, which describes the dynamics 

of sea ice in the Antarctic MIZ. Hibler's existing large-scale model, implemented in 

OpenFOAM by Bogaers, Rensburg et al. (2018), is used as a basis, which is subsequently 

modified to obtain a more accurate and realistic model. To achieve this, the following 

objectives are set: 

 

• Distinguish between two main material constituents, namely, pancake ice and frazil ice. 

All constituents are described by their own material law, each with different material 

characteristics. Correct implementation and analyses of the interaction of ice materials, 

e.g. pancake-pancake ice and pancake-frazil ice interactions is required. 



• Implementation of wind, waves and ocean current. 

• Find the transition from small-scale to large-scale sea ice models. 

 

The choice of rheology is based on material characteristics of each constituent. Unlike the 

treatment in the viscous-plastic rheology of sea ice on the larger scale, single pancake ice 

modelling on the small-scale need to consider its dominantly solid-like behaviour, which 

results in small deformations. Therefore, pancake ice will be described using Hooke's law. 

Frazil ice behaves like a fluid, since it has no rigidity, and thus can be considered to be governed 

by viscous-plastic behaviour. Hence, the intended small-scale sea ice model will be described 

by an elastic-viscous-plastic rheology. Adding an elastic part to the re-written viscous-plastic 

rheology given in equation (5), results in the equation given below: 

1

𝐸

𝜕𝝈

𝜕𝑡
+

1

2𝜂
𝝈 + 𝑰 [

𝜂 − 𝜁

4𝜂𝜁
tr(𝝈) +

𝑃

4𝜁
] = �̇�. (11) 

By adding the elastic part to the equation, Hunke and Dukowicz (1997) used this EVP equation 

to solve the viscous-plastic rheology more accurate and efficient. Compared to the viscous-

plastic model, this EVP rheology allows for solving the transient response more accurately 

using larger time steps. The transient response can be defined as any response to a change from 

steady-state conditions of the system. Hunke and Dukowicz (1997) solved this equation by 

writing it numerically as 

1

∆𝑡
(𝝈𝑘+1 − 𝝈𝑘) +

𝐸

2𝜂
𝝈𝑘+1 + 𝑰 [𝐸

𝜂 − 𝜁

4𝜂𝜁
tr(𝝈𝑘+1) +

𝐸𝑃

4𝜁
] = 𝐸�̇�𝑘 , (12) 

where 𝐸 represents the Young’s modulus and 𝑘 the iteration step of the discretised momentum 

equation for a time step size of ∆𝑡. Note, however, that Hunke and Dukowicz (1997) applied 

this approach to the large-scale domain considering one single homogenized material and the 

elastic term is added solely as a numerical stabilisation term.  

 

As mentioned before, in contrast to Hunke and Dukowicz (1997), the proposed small-scale sea 

ice rheology considers a domain where pancake ice and frazil ice are geometrically 

distinguished from each other. Accordingly, the elastic part, representing pancake ice, is 

derived from Hooke's law in three dimensions, which can be written as 

𝝈 = 2𝜇𝜺 + 𝜆𝑰tr(𝜺),              𝜇 =
𝐸

2(1 + 𝜐)
,             𝜆 =

𝜐𝐸

(1 + 𝜐)(1 − 2𝜐)
 , (13) 

where 𝜇 and 𝜆 represent Lamé constants and 𝜐 the Poisson's ratio. Note that 𝜺 represents strain. 

In order to write Hooke’s law in terms of the strain rate, linearization in time is required. 

Subsequently, equation (6) is substituted in the linearized equation in order to write the 

equation in terms of the velocity vector 𝑼, resulting in 

𝝈𝑘+1 = 𝝈𝑘 + ∆𝑡(𝜇(𝛁𝑼 + (𝛁𝑼)𝑇) + 𝜆𝑰tr(𝛁𝑼)), (14) 

where 𝑘 represents the iteration step of the discretised momentum equation for a time step size 

of ∆𝑡. 

 



The viscous-plastic rheology, representing frazil ice in the small-scale model, can also be 

written in terms of the velocity vector 𝑼, resulting in 

𝝈𝑘+1 = 𝜂(𝛁𝑼 + (𝛁𝑼)𝑇) + (𝜁 − 𝜂)𝑰tr(𝛁𝑼) − 𝑰
𝑃

2
. 

(15) 

In order to spatially distinguish between the material constituents, we make use of the volume 

of fluid (VOF) method. The VOF method is a numerical technique, describing the interface 

between two immiscible and incompressible fluids (Roenby, Bredmose et al. 2016). 

Domain size plays an important role, since this paper specifically focusses on small-scale 

modelling of the dynamics of sea ice in the Antarctic MIZ. What is small-scale modelling of 

sea ice in this context? Large-scale models in literature refer to domain sizes of 10 to 100 

kilometers. Finding the threshold between large-scale and small-scale, is critical to set up the 

required domain size for the small-scale modelling. This is done by calculating the average 

stress, average strain rate and average viscosity for different domain sizes. The ratio of total 

pancake ice to frazil ice occupying the domain stays constant for this convergence analysis. 

The size of pancake ice does not change as the domain size changes. Once the average is 

unaffected by changes in the domain size, the transition between small-scale and large-scale 

modelling has been identified. A relatively small patch of sea ice is best represented 

numerically by periodic boundary conditions. Ice flux leaving the outlet boundary equals ice 

flux entering the inlet boundary. Numerically this means that all values of each variable at the 

outlet boundary are equal to the values of each variable at the inlet boundary (Versteeg 1995). 

 

The variables ice thickness, ℎ, and ice coverage, 𝐴, describe a smeared model approach, in 

which several different types of ice are modelled as one homogeneous material representing 

averaged quantities. In the small-scale model the variables ice thickness, ℎ, and ice coverage, 

𝐴, are treated differently. Ice coverage, 𝐴, has been replaced by two different ice materials; 

pancake and frazil ice. Ice thickness, ℎ, is assumed to be time-independent. Both pancake and 

frazil ice have a constant, but independent ice thickness, since the change in ice thickness in z-

direction is negligibly small compared to the size of the domain in x- and y-direction. Hence, 

equation (10) is not part of the small-scale model, resulting in a simplified equation for the ice 

strength 

𝑃 = 𝑃∗ℎ. (16) 

The next section shows preliminary numerical results obtained from the small-scale model. 

First the transition from small-scale to large-scale modelling is determined. Subsequently, 

results from OpenFOAM are shown and explained. 

 

NUMERICAL RESULTS 

In this section two different studies have been conducted. The first study identifies the 

transition between large-scale and small-scale modelling. As mentioned previously, this is 

done by considering different domain sizes with constant ratio of total pancake ice to frazil ice 

occupying the domain. Figure 2 shows three different domain sizes starting from 100x100m to 

400x400m. Bigger domain sizes have also been considered, up to 1600x1600m. Red and blue 

represent pancake ice and frazil ice, respectively. 



   

Figure 2. Different domain sizes from 100x100m to 400x400m,  

with equal ratio of pancake-frazil ice. 

For this test case, a constant wind velocity in m/s of (𝑥, 𝑦, 𝑧) = (1, −1, 0) is considered. 

Periodic boundary conditions are applied. The VOF method distinguishes pancake ice and 

frazil ice by the parameter 𝛼 (Roenby, Bredmose et al. 2016). Cells containing pancake ice and 

frazil ice have 𝛼 values of 1 and 0, respectively. All values in between have no physical 

interpretation; however, these occur because of numerical diffusion; a difficulty encountered 

in CFD simulations. Cells affected by numerical diffusion are called interface cells. The 

percentage of interface cells to total domain cells must be of similar magnitude for all domain 

sizes. To determine the transition between small-scale and large-scale models the average 

stress, average strain rate and average viscosity are calculated each of which change with an 

increase in domain size. Once the average is unaffected by changes in the domain size, the 

threshold has been identified.  

 

In Table 1 percentages are shown of interface cells to total cells for different domain sizes. The 

percentages highlighted are sufficiently close in order to compare the different domain sizes.  

 

Table 1. Percentage of interface cells to total cells for different domain sizes. 

 

 

Domain size [m] 

100x100 200x200 400x400 800x800 1600x1600 

#
 C

el
ls

 [
-]

 

3025 2.38     

10000 1.22 2.34 4.54 9.69 19.9 

40000 0.60 1.16 2.41 4.60 9.53 

160000 0.28 0.57 1.16 2.41 4.62 

640000     2.46 

 

Figure 3 shows both the effective average stress, 𝜎eff and 𝜀ėff for three different domain sizes. 

The red and blue lines show the same average values, meaning the transition from small-scale 

to large-scale has been found at a domain size of approximately 800x800m. 

 

The second study simulates pancake ice modelled as circular shaped ice floes in the small-scale 

domain of 800x800m for a period of 𝑡 = 600 𝑠. The ice is exposed to a vortex wind loading 

moving to the top-right corner of the domain, shown at 𝑡 = 0 𝑠, 𝑡 = 330 𝑠 and 𝑡 = 600 𝑠 in 

Figure 4. 



 

Figure 3. Effective average stress and strain rate for three different domain sizes. 

   

Figure 4. Vortex wind loading moving to the top-right corner of the domain  

at 𝑡 = 0 𝑠, 𝑡 = 330 𝑠 and 𝑡 = 600 𝑠. 

     

Figure 5. The configuration of pancake ice and frazil ice at 𝑡 = 0 𝑠, 𝑡 = 330 𝑠 and 𝑡 = 600 𝑠 

represented by red and blue, respectively. 



Figure 5 shows sea ice configuration at 𝑡 = 0 𝑠, 𝑡 = 330 𝑠 and 𝑡 = 600 𝑠. Individual pancake 

ice floes follow the motion of the vortex and subsequently collide with small deformation. A 

small layer of frazil ice separates pancake ice during collision. The thickness of the frazil ice 

layer and the level of compression depend on the material properties of both pancake and frazil 

ice, given in Table 2. The stress distribution during pancake-pancake ice interaction and 

pancake-frazil ice interaction at 𝑡 = 330 𝑠 and 𝑡 = 600 𝑠 are shown in Figure 6. The latter 

caps the maximum stresses values to better illustrate the stress distribution in frazil ice. The 

stress is highest at the interface between pancake ice floes. Pancake ice pushes frazil ice away, 

resulting in a higher stress at the front of the pancake ice floes and a lower stress behind the 

pancakes. 

 

           

           

Figure 6. Interaction between pancake and frazil ice at 𝑡 = 330 𝑠 and 𝑡 = 600 𝑠.  

Some material parameters, like the density and the strength of frazil ice, still need to be 

accurately determined. A rough estimation of these parameters has been used in the small-scale 

model. These values will be updated  after the Polar Engineering Research Group has extracted 

sea ice samples from the Antarctic MIZ during the SA Agulhas II winter cruise in 2019. All 

parameters, including definitions and values can be found in Table 2. 

 

CONCLUSIONS 

This paper has shown the promising initial work into the small-scale modelling of sea ice in 

the Antarctic MIZ. The existing large-scale model by Hibler has been modified on several 

aspects. Firstly, different ice material constituents are distinguished; pancake ice and frazil ice 



with distinct properties. This in contrast to a smeared model approach in which a large fractured 

sea ice area is modelled as one isotropic, continuous and homogeneous material representing 

averaged quantities. Secondly, an elastic-viscous-plastic small-scale sea ice rheology has been 

developed, which allows for both pancake-pancake ice and pancake-frazil ice interaction. 

Lastly, a vortex wind loading is implemented, derived from Mehlmann and Richter (2017), 

which provides the flexibility required for realistic modelling of sea ice dynamics. 

 

Table 2. Parameters, definitions and values. p = pancake, f = frazil 
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