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ABSTRACT 

One of the methods to determine the flexural strength of ice and its effective elastic modulus 

is loading tests of floating cantilever ice beams. This is a practical and relatively simple 

approach enabling researchers to test ice beam samples representing natural distribution of 

temperature and salinity in ice cover. The results of such experiments in field conditions have 

been discussed in many references and, as noted by a number of authors, this testing 

technique typically involves stress concentrations at the root of ice beam samples, which is a 

problem for test data interpretation and may potentially result in conservative estimates of the 

ice flexural strength. In this case, it is meant that stresses, primarily tensile stresses, rise to 

exceed the stresses calculated based on the beam approach. The level of stress concentration 

strongly depends on the cuts shaping the sides of cantilever ice beams. Results obtained by 

various researchers (including those generalized by Timko and O'Brien, 1994) are difficult to 

compare because of this significant factor. This paper contains results of experimental studies 

regarding the influence of beam root details on the test results. The original experiments were 

conducted in fresh-water ice, which in the authors’ opinion, provides the best description of 

the effect under consideration. In addition to experimental data, the paper presents the results 

of 3D modeling of the cantilever ice beams with various clamp options. The data were 

generalized to suggest a shape option for the cantilever ice beam, which significantly reduces 

the impact of stress concentrations on the flexural strength estimates. With regard to the 

elastic modulus, the performed study showed that its value can be appropriately determined 

based on the cantilever beam curvature. 
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INTRODUCTION 

Ice strength properties have to be determined for estimating stability of ice-resistant 

structures on seabed, ice-going capability of vessels, i.e. when problems associated with ice 



failure processes are addressed. One of the parameters characterizing the strength of 

continuous level ice is its flexural strength. This quantity can be determined in different ways. 

One method is to load a floating cantilever ice beam until it breaks. It is a practical and 

relatively simple approach enabling experiments on ice specimens with natural temperature 

and salinity distributions. One of the advantages of this method is that the obtained result is 

valid across the full thickness of ice. Such experiments and their results have been described 

in many publications (Dykins, 1968; Frederking and Svec, 1985; Frederking and Hausler, 

1978; Tatinclaux and Hirayama, 1982). In-situ full-scale tests on flexural strength of floating 

cantilever beams have been performed in the Van-Mijen Fjord and Ice Fjord of Spitsbergen 

fjords since 2009 (Karulin et al., 2011; Karulina et al., 2013; Ervik et al., 2014; Marchenko et 

al., 2017). 

Svec et al. (1985) have noticed one specific feature of this method, namely, stress 

concentrations arising at ice beam roots, which cause problems for interpretation of test data 

and may result in underestimation of the flexural ice strength. Svec et al. (1985) also give the 

results of numerical simulation of a two-dimensional bending of cantilever beam and 

experimental data on stress distribution around stress-relieving holes at the root of side cuts. 

The experiments were performed using the photoelastic method. It was shown that the 

stresses near the beam root decrease with the increase of the hole diameters. Marchenko et al 

(2014) analyzed three-dimensional effects of local increase of axial stress near the root holes 

in the tests with floating cantilever beams and discussed potential influence of 

underestimation of the flexural ice strength on ice failure by waves. 

Frederking and Svec (1985) compared the results obtained from cantilever ice-beam bending 

simulations with the flexural strength data determined experimentally based on the beam 

theory relationships. The modulus of elasticity was also determined in these experiments 

based on the ice-beam strain. The tests were conducted in an outdoor manoeuvering basin 

filled with freshwater. For quite warm freshwater ice (mean temperature not lower 

than -2С), the correction factor was obtained. At the same time, Timco (1985) found that, in 

the case of sea ice with a temperature not lower than -10С, there was no influence of the 

stress relief holes at the root on the tests results. 

In this paper the results of full-scale tests on bending of floating cantilever beams performed 

with different diameters of stress-relieving holes at the beam roots are discussed and 

analyzed. The local rise of primarily axial stresses in an ice beam is compared with stresses 

acting in the longitudinal plane of symmetry at the same cross section of the beam, at 

maximum distance from its neutral plane. Deformations of floating cantilever beams are 

compared with the deformations calculated from simple beam theory approach. An influence 

of deformations near the root of a floating cantilever beam on a methodic of calculation of the 

effective elastic modulus is discussed. The modified geometry of a floating cantilever beam is 

considered, which allows avoiding the effect of increasing local stress in the beam root on the 

flexural strength. 

 

DESCRIPTION OF EXPERIMENTAL PROCEDURES 

Test setup and equipment  

A short series of tests on floating cantilever ice beams was carried out at a freshwater lake 

located on the slope of Breinosa Mountain, outside  Longyearbyen (Svalbard), during the 

autumn of 2014 (late October-early September). The main purpose of these experiments was 

to find out how the obtained flexural ice strength values depend on the diameter of stress-

relieving holes at the root of side cuts (Figure 1). Concurrently, deflections of the ice beam tip 

under load were determined to estimate the effective modulus of ice elasticity. Stresses at 



break of cantilever beams and the effective modulus of elasticity were estimated based on the 

simple beam theory: 

𝜎𝑓 =
6𝐹𝑏∙𝑙

𝑏ℎ2 ; 𝐸 =
𝐹𝑏

𝛿𝑏
∙

4𝑙3

ℎ3𝑏
 (1) 

where 𝐹𝑏 is the breaking force; 𝛿𝑏 is the deflection of the free end of the beam at the moment 

of its breakage; 𝑙, 𝑏, ℎ are the length, the width and the ice thickness of a beam, respectively. 

 
Figure 1. Cantilever beam (planform) and stress relief holes of diameter 𝑑 

The flexural strength of ice was determined by traditional cantilever beam test procedures as 

per ITTC recommendations (ITTC, 2014) using the following equipment (Figure 2b): 

- loading steel frame mounted over the free end (tip) of cantilever beam to transmit forces 

from fixed ice to the beam (1); 

- tensioning chain anchors to fix the loading frame on ice surface (7); 

- electro-hydraulic station and hydraulic cylinder (4); 

- strain gauge dynamometer (3) and displacement transducer (5) fixed to strut (6); 

- data logger unit (8) to measure and record signals from the dynamometer and 

displacement sensor. 

 

  
a). Beam side cutting   b). Loading schematic  

  
c). Beam root with 100 mm holes  d). Beam root with 200 mm holes  

Figure 2. Test equipment and beam preparation. Ice Fjord, February 2010 

The cantilever beam was cut from the ice cover, and the vertical holes of specified diameter 
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were drilled at the clamped beam end (Figure 2a,c,d). The snow cover effect on flexural 

strength was not investigated. For the purpose of static balance, snow on the cantilever ice 

beam was left untouched. However, the clamped end was cleared of snow to observe 

cracking. 

During the tests, the force applied to the beam and the beam’s tip deflection were recorded 

(sampling rate 50 Hz). The beam deflection was measured with respect to unloaded ice 

surface around the loaded tip (at the point on the opposite side of Π-shaped cut). Figure 3a,b 

gives sample records of the load force and beam tip deflection. In the cases under 

consideration ice failure happened very quickly (<1.5 s), and it can be assumed that it was a 

brittle failure. This is what makes the results of this experimental study essentially different 

from those obtained by Frederking and Hausler (1978). 

 

  

a). Time series of beam loading  b). Time series of beam tip deflection 

Figure 3. Sample records 

Experimental results 

The processed test data are summarized in the Table below. Figure 4a and Figure 4b 

graphically show the flexural strength and effective modulus of elasticity versus the diameter 

of holes at the root-end of side cuts. 

Table 1. Results of the field works 

No Date 
Length 

l [m] 

Width 

b [m] 

Thickness 

h [m] 

Temperature 

[° C] 

Flexural 

strength 

[kPa] 

Deflection 

[mm] 

Young 

module 

[MPa] 

Root 

diam 

d 

[mm] 

1.  25.10.2014 1.80 0.60 0.26 -0.1 508 1.10 3831 100 

2.  28.10.2014 1.45 0.6 0.27 -1.0 428 0.80 2767 100 

3.  29.10.2014 1.46 0.6 0.28 -1.2 664 1.70 1985 350 

4.  30.10.2014 1.66 0.6 0.28 -0.1 497 0.80 4060 50 

5.  01.11.2014 1.72 0.58 0.3 -0.5 807 1.62 3278 200 

 

The data presented in Figure 4a indicate that at smaller diameters of holes at the root-end of 

side cuts the ice beam specimens break at lower stresses as calculated from the simple beam 

theory. It is likely that the failure is initiated at the locations where stresses exceed the stress 

level calculated by the simple beam theory. This is due to specific shape features of the side 

cuts at the beam root, which act as stress raisers (concentrators). Figure 4b indicates that the 

beam tip deflection is changed with the hole diameter variation. At the same time we assume 

that the ice effective elastic modulus is constant as a certain medium parameter. 
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a) b) 

Figure 4. Flexural strength (a) and effective elastic modulus (b) of freshwater ice versus the 

diameter of holes at the beam roots (experimental points and best fit lines) 

Numerical simulations of the above-described experiments were performed for in-depth 

analysis of the obtained data. 

 

NUMERICAL SIMULATION  

Statement of problem, co-ordinate axes, computational domain, computational grid 

For interpretation of the obtained experimental results numerical simulations were performed 

to address the problem of cantilever ice beam bending. Beams were assumed to be cut out 

from a freely floating ice plate and sized as the ice beams used in the physical experiment. 

Computations were performed by Comsol software. 

Simulations were done for a homogeneous isotropic plate of constant thickness resting on 

elastic foundation. The co-ordinate axes have their origin on the lower beam surface at 

intersection of the beam symmetry plane and the plane passing through the vertical axes of 

root holes. OX-axis is directed along the beam symmetry plane and positive from the beam 

root to the beam tip, OY-axis is positive to the left of the positive OX-axis direction, OZ-axis 

is positive upward. For keeping the equilibrium condition similar to that of the in-situ 

experiment, the vertical load, which is applied to the vertical face of the tip to bend the beam, 

is counterbalanced by an opposite and equal force applied to the hole simulating anchor holes 

7 (Figure 2b). The material is assumed to be of a linearly elastic type. It is assumed that the 

ice beam is cut out from a circular plate of 100 m diameter and 0.28 m thickness (Figure 5a). 

Horizontal displacements of beam’s side surface are assumed to be 0. The problem is solved 

as a symmetric problem with respect to the beam’s vertical plane of symmetry. A domain in 

the vicinity of the beam is identified to generate a finer computational grid (Figure 5b). A 

small area near the beam is represented by prismatic finite elements with triangular bases, 

while a wider area is represented by tetrahedral elements.  The total number of finite elements 

range from 110000 to 140000, depending on the domain configuration. The following 

environmental constants are assumed: modulus of elasticity 𝐸 – 3.2 GPa, ice density 𝜌𝑖𝑐𝑒 – 

900 kg/m
3
, Poisson ratio – 0.36, water density 𝜌𝑤  – 1025 kg/m

3
, stiffness of elastic 

foundation – 𝜌𝑤 ∙ 𝑔, where 𝑔 is the gravitational acceleration. Environmental parameters are 

similar to the real ice parameters in the in-situ experiment. The beam was statically loaded 

with a force whose magnitude was close to the in-situ test force of 1300 N applied to half of 

the beam (due to the problem symmetry). 



  

a) b) 

Figure 5. Computational domain and grid 

Computational cases. Results of computations 

Dimensions of ice beams chosen for numerical simulations are given in Table 2. 

 

Table 2. Ice beam dimensions in numerical simulations  

No Length l [m] Width b [m] Thickness h [m] Root diameter d [m] 

1 1.600 0.600 0.280 0.050 

2 1.600 0.600 0.280 0.100 

3 1.600 0.600 0.280 0.200 

4 1.600 0.600 0.280 0.350 

 

Figure 6 gives distributions of stresses 𝝈𝒙𝒙 along the following lines: Figure 6a – distribution 

along longitudinal lines on the upper surface (z=0.28 m) and lower surface (z =0.00 m) of the 

beam, at mid-length of the beam (y=0.00 м), at 0.25 width (y=0.15 m) of the beam, and at the 

beam edge (y=0.30 m); Figure 6b – distribution along transverse lines in two cross sections, 

at different distances from the co-ordinate axes origin (x=-0.010, x=0.000 and x=0.010 m) at 

mid-height of the beam (z=0.14 m), at 0.75 height of the beam (z=0.21 m), and on the upper 

surface of the beam (z=0.28 m). 

 

  

a) b) 

Figure 6. Longitudinal and transverse distribution of stresses 𝝈𝒙𝒙  

Stress data computations were analyzed based on tensile stresses 𝝈𝒙𝒙 taken at the following 

points: σxx
E  is the maximum  tensile stresses on the beam side near its root, at the point where 

the cylinder shape transits to flat side surface (point A in Figure 7a); σxx
M  is the maximum 

tensile stresses on the line where the upper beam surface is crossed by the plane of beam’s 

symmetry (the point is located near the plane passing through vertical axes of root holes, 

point B in Figure 7b). 



  
a) b) 

Figure 7. Distribution of stresses 𝝈𝒙𝒙 for the beam with root holes of d=100 mm 

The stresses obtained for the above-said characteristic points are given in Table 3. It is seen 

from the given results that: 

 Maximum stresses on beam’s side surface around the stress concentrator are decreased as 

the root hole diameter is increased; 

 Maximum stresses on beam’s upper surface in the longitudinal plane of symmetry near 

root are increased as the root hole diameter is increased. 

The latter is understandable because the system tends to hold its balance. 

The same table contains the values of coefficient: 𝐾 = 𝝈𝒙𝒙
𝑴

𝝈𝒙𝒙
𝑬⁄  – ratio of upper surface 

stresses to side surface stresses near the stress concentrator. Figure 8 shows the coefficient 𝐾 

in function of the root hole diameter. The curve has the same pattern as the curve in 

Figure 4a, above. Presumably, this fact can be employed to take into account the effect of 

root hole diameters on the estimated flexural strength of ice. This approach was implemented 

by Frederking and Svec (1985). 

Table 3. Tensile stresses in characteristic beam points  

No Root 

diameter 

d, m 

Maximum stresses 

on beam’s side 

surface σxx
E , МPа 

Maximum stresses on 

upper surface at beam’s 

mid-width σxx
M , МPа 

𝐾 =
𝜎𝑥𝑥

𝑀

𝜎𝑥𝑥
𝐸

 

1 0.050 1.350 0.450 0.333 

2 0.100 1.030 0.462 0.449 

3 0.200 0.837 0.480 0.573 

4 0.350 0.730 0.495 0.678 

 

 

Figure 8. Parameter 𝐾 = 𝝈𝒙𝒙
𝑴

𝝈𝒙𝒙
𝑬⁄  vs. the hole diameter 
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Numerical results were also used to check if the effective modulus of elasticity was correctly 

“reconstructed” based on the simple beam theory for the cantilever beam and the beam tip 

deflection measurements. For this purpose deflections in 4 points were determined on the 

beam upper surface in the longitudinal plane of symmetry (Figure 9): point No. 1 on beam 

tip; point No. 2 on opposite surface of side cut; point No. 3 on plane of root hole axes 

(x=0.000 m); point No. 4 on plane tangent to the remotest points of root holes (x=-0.5*d m). 

 

Figure 9. Layout of points for beam deflection measurements 

Table 4 gives deflections, deflections differences, and effective elastic modulus of ice 

estimated using the difference between deflections in relevant points. The same table contains 

the results of computations done for the same beam based on the assumption that the beam 

cross section at the origin of co-ordinate axes is fully fixed. This section passes through 

vertical axes of root holes. This case is marked in the table by *. 

Table 4. Deflections of characteristic beam points and effective elastic modulus 

Root 

diameter 

d, m 

Point deflection, mm 
Difference in point deflection, 

mm 

Effective elastic modulus 

corresponding to deflection 

difference, GPа 

№ 1 № 2 № 3 № 4 № 2-№ 1 № 3-№ 1 № 4-№ 1 № 2-№ 1 № 3-№ 1 № 4-№ 1 

0.050 2.138 0.131 0.333 0.333 2.006 1.804 1.804 1.61 1.79 1.79 

0.100 2.278 0.134 0.380 0.354 2.145 1.899 1.925 1.51 1.70 1.68 

0.200 2.522 0.134 0.462 0.403 2.388 2.060 2.119 1.35 1.57 1.53 

0.350 2.857 0.124 0.587 0.468 2.733 2.270 2.389 1.18 1.42 1.35 

0.100* 1.001 0.000 0.000 0.000 1.001 1.001 1.001 3.23 3.23 3.23 

It is seen from the table (rows 1-4) that computations of the effective elastic modulus based 

on the simple beam theory yield very low values. The reason is not only deflection of the 

beam root, but also rotation of the cross-section at the same place. Figure 10 illustrates this 

issue. Even if the modulus of elasticity were to be estimated from the difference in deflection 

of beam’s tip and root (Figure 10 dashed line), there would be a significant error due to an 

angle of rotation at the root section. 

 

Figure 10. Comparison of bending behavior of a beam modelled from field tests and that of 

the same beam with a fixed root section (root diameter 0.1 m): the solid red line (1) – 

deflection of the beam root and rotation of the cross-section in the root; 

the dashed red line (2) – only rotation of the cross-section in the root 
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Determination of effective elastic modulus based on the curvature of the beam 

In accordance with Timoshenko and Goodier (1970), the elastic modulus distribution along 

the beam can be calculated as 𝐸 =
𝑀(𝑢)

𝑘(𝑢)∙𝐽
 where 𝑢  is the coordinate according to 

Figure 11, 𝑢 = 𝑙 − 𝑥; 𝑀(𝑢) is bending moment; 𝑘(𝑢) is the curvature of central line of the 

beam determined as 𝑘(𝑢) =
𝑑𝜑(𝑢)

𝑑𝑠
; 𝜑 is the sloping angle of the central line to horizon; 𝑠 is a 

coordinate along the central line; and 𝐽 =
𝑏ℎ3

12
 is the inertia moment of the beam cross-section. 

If the curvature is small, then 𝑑𝑠 ≅ 𝑑𝑢. For a cantilever beam 𝑀(𝑢) = 𝐹𝑢, and the curvature 

depends linearly on 𝑢 , i.e. 𝑘 = 𝐴𝑢 . For calculation of parameter 𝐴, measurements of the 

central line deflection {𝑤𝑖−1, 𝑤𝑖, 𝑤𝑖+1} at three points {𝑢𝑖−1, 𝑢𝑖 , 𝑢𝑖+1} can be used (Figure 11): 

𝐴 =
6

(𝑢𝑖+1−𝑢𝑖−1)(𝑢𝑖+1+𝑢𝑖+𝑢𝑖−1)
∙ (

𝑤𝑖−𝑤𝑖−1

𝑢𝑖−𝑢𝑖−1
−

𝑤𝑖+1−𝑤𝑖

𝑢𝑖+1−𝑢𝑖
) (2) 

The elastic modulus is calculated as 

𝐸 =
𝐹

𝐴𝐽
.  (3) 

 

Figure 11. Scheme for determination of elastic modulus based on the beam curvature 

The method was applied for determination of the elastic modulus in the numerical case 

presented above (Figure 10, blue line). Table 5 contains the results of calculations. It can be 

seen from the table that the calculated values of the elastic modulus are close to the 

predetermined value of 𝐸=3.2 GPa (the discrepancy is less than 1%). 

Table 5. Calculation of the elastic modulus (Eqs. 2 and 3) 

𝑢-coordinate, m 0.0 0.5 1.1 1.6 

Deflection 𝑤, m -0.00227780 -0.00153992 -0.00078566 -0.00037636 

Parameter 𝐴, m
-2 

- 0.000745488 0.000747471 - 

Elastic modulus 𝐸, GPa - 3.178 3.169 - 

 

This result confirms the validity of the described method. It can be used in the field tests for 

determination of the effective elastic modulus based on the deflection measurements at 

several points (≥ 3) along the cantilever beam length. The similar approach based on the 

least-squares deviation method was suggested by von Bock and Polach (2005) for model ice. 

 

MODIFICATION OF CANTILEVER BEAM PLANFORM TO MITIGATE STRESS 

CONCENTRATION EFFECT ON THE FLEXURAL STRENGTH EVALUATIONS 

In order to obtain correct flexural strength of ice it is possible to: 

- introduce some correction factors allowing for stress concentrator effects; 



- adjust the beam shape to eliminate stress concentration effects on the beam failure 

process. 

The first option is flawed by uncertainty as to how the correction factors depend on the beam 

geometry and ice properties. The above-described experiments in freshwater ice have 

revealed that stress concentrations influence the flexural strength values. At the same time, 

Frederking and Svec (1985) have not found that kind of effects in seawater ice experiments. 

This study attempts to follow the second option, i.e. to modify the beam planform so that ice 

would not fail in the area of stress concentrations, but under smooth change of the beam form 

where stress variations are described by the simple beam theory. Figure 12a shows suggested 

Y-shape planform of the beam, which has a radial transition of parallel side surfaces to a 

wider base near the root. 

Table 6 gives parameters of the tested Y-shape cantilever beam and the determined flexural 

strength values. The beam's view before and after the failure is shown in Figure 13. It can be 

seen that the beam failure took place at some distance from the root, and the obtained flexural 

strength was greater than the value determined from the test with the beam of traditional 

planform (Table 6, second row). Both beams had the stress relief holes of same diameter in 

the root section. 

 

 
 

a)  b)  

Figure 12. Y-shape beam: a) plan view, and b) flexural stress distribution along the beam 

 

Table 6. The beams geometry and the flexural strength 

Type 
Length l 

[m] 

Width b 

[m] 

Thickness 

h [m] 

Root 

diameter 

d [m] 

Conjunction 

diameter D 

[m] 

Distance 

a [m] 

Distance 

c [m] 

Flexural 

strength 

[kPa] 

Y-shape 1.650 0.370 0.400 0.100 0.29 0.700 0.300 534 

Conventional 1.850 0.495 0.395 0.100 - - - 349 

 

  
a) b) 

Figure 13. Y-shape beam before (a) and after (b) the test. 
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Figure 12b shows distribution of the tensile stresses on the upper surface of the Y-shape 

beam. The solid red line shows the stress distribution along the beam's axis based on the 

simple beam theory. The red circles refer to the numerical calculations: these points 

correspond to the stresses averaged over a width of the beam cross-section. The solid blue 

line gives the stress distribution along the edge of the beam. Thus, two issues should be 

considered at modifying the beam planform: 1) the stresses in the root section including the 

stress concentration effects should be less than the stresses in the other cross-sections, and 2) 

a smooth conjugation of the planes forming the side surfaces of the Y-shape beam should be 

used to minimize the stress concentration at those areas. According to the numerical 

simulations, the stresses increase by 40% at D=0.29 m, by 12% at D=2 m, and by about 4% 

at D=4 m for the beam shown in Figure 12b. 

 

CONCLUSIONS 

The paper gives results of the freshwater ice flexural strength determination based on the 

cantilever beams bending in-situ at various holes diameters at the beam root. As well, the 

influence of the stress relief hole diameter on the result was studied numerically using 3D FE 

model. Comparison of the tests results and numerical simulations are in good qualitative 

agreement regarding the influence of the holes diameters on the flexural strength value 

determined from the cantilever beam tests. Based on the performed analysis, a modification 

of the beam planform has been suggested which should eliminate the influence of the holes 

diameter on the test result. 

The performed numerical simulations have indicated systematic error in determination of the 

effective elastic module based on the cantilever beam tests and the simple beam theory. The 

error is caused by difference in the deformation processes during bending of the cantilever 

beam with fixed root and the beam cut from the floating plate. This results in underestimation 

of the effective elastic module of the ice at about two times due to incorrect application of the 

simple beam theory to processing the cantilever beam tests data. 

The study showed that the determination of the elastic modulus based on the beam curvature 

gives the adequate values. To implement this method, it is sufficient to know deflections at 

three points along the beam central axis. 
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