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ABSTRACT 

The bending failure of level ice in 2D is mainly characterized by its breaking length and 

interaction forces. In this paper a study is carried out to assert if a 2D ice-structure interaction 

model based on an incompressible, inviscid and irrotational fluid together with the linearized 

Bernoulli equation for ice can reproduce the dependence of the breaking length on the 

interaction velocity as observed in experiments. To this end a 2D model is composed in 

which the ice, modelled as a semi-infinite Euler-Bernoulli beam, is pushed into a rigid, 

immovable, downward-sloping structure with a fixed horizontal velocity. The beam rests on 

the finite depth, infinitely wide fluid layer.  

To assert whether this linear description of the fluid suffices, the velocity dependence of the 

breaking length predicted by this model is compared with the experimentally validated 2D 

model of (Valanto 1992). The comparison shows that linear hydrodynamics gives significant 

error in certain velocity ranges. Recommendations are given as to a fluid model that would 

result in an improved prediction of the velocity dependence of the breaking length.  

KEY WORDS: Bending failure, hydrodynamics, modeling, level ice.  

INTRODUCTION 

The breaking length of level ice is a widely studied topic in ice-structure interaction. A 

correct prediction is important for several reasons. Firstly, because the breaking length is 

directly linked to the time of failure, and therefore to the duration of the interaction, it 

governs the amount of work done by the ice on the structure and therefore governs the 

magnitude of the structure’s response. Secondly, the breaking length, together with the 

interaction velocity, determines the period of ice failure and so is important for the dynamic 

response of the structure. A correct predictions of the breaking length is therefore imperative 

for a dynamic ice-structure interaction model.  

To the authors’ knowledge, only very few hydro-elastic ice-structure interaction model have 

been implemented to date, namely (Valanto 1992; Valanto 2001; Valanto 2006; Lubbad et al. 

2008; Lu et al. 2012). Of these models only one is in 2D, namely (Valanto 1992). In this 

paper the dependence of the breaking length of level ice on the interaction velocity, i.e. the 

dynamic breaking length, is presented and shows good agreement with experimental results.  

It remains unclear, however, which components of Valanto’s model are essential in its correct 
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prediction of the dynamic breaking length. As each component can incur a significant 

implementation cost, knowing which ones may be neglected is essential. 

The goal of this paper is to determine whether a linear description of the fluid can replicate 

the dynamic breaking lengths observed by Valanto. This linear model is introduced in the 

next section. After this, the model’s breaking lengths are compared with the experimental 

data by Valanto. This comparison will show that the proposed linear model has significant 

errors in certain velocities ranges. A discussion follows to estimate which assumption has led 

to this discrepancy.  

In this paper 2D models are used for the sake of simplicity but the qualitative findings are 

postulated to also apply to 3D.  

MODEL DESCRIPTION 

In this section a brief description of the linear model is given. The purpose of this section is 

to highlight the assumptions on which the model is based so that any discrepancies in the 

breaking behavior can be traced back to a difference in the assumptions made. Because of 

this, details regarding the implementation are kept to a minimum for brevity. The model is 

depicted in the e below.   

 

Figure 1. Problem overview of the linear 2D model 

For simplicity the structure itself is considered in a simplified manner. Its geometry is not 

taking into account as a boundary condition for the fluid. However, for determining the ice-

structure interaction loads the structure is modeled as a rigid, immovable, downward sloping 

wall with an angle 𝛼. The ice itself, located at 𝑥 ≤ 0, moves with a constant velocity 𝑉𝑖𝑐𝑒 

towards the structure. The ice then fails dynamically because of the initial impact or quasi-

statically as it is gradually pushed further down the wall. In both cases the ice fails in pure 

bending.  

The ice rests a the fluid layer that has a depth 𝐻. The fluid layer is infinite in horizontal 

direction. As the ice is deflected, surface waves are generated that propagate away from the 

interaction point. These radiated waves act as a form of energy dissipation. Additionally, the 

fluid underneath the ice has to be mobilized when the ice deforms, resulting in additional 

resistance. Both effects thus resist the vertical motions of the ice. Since the ice is 

kinematically forced to move downward because of the structure, the extra resistance results 
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in higher stresses in the ice and therefore in earlier times of failure and shorter breaking 

lengths. Note that these forms of resistance are not present in models that only capture 

hydrostatics. The mathematical description of the model is given next.  

Mathematical Description of the Model 

The fluid is assumed to be incompressible, inviscid and irrotational and so is governed by the 

Laplace equation:  

Δ𝜙(𝑥, 𝑧, 𝑡) = 0         ∀ 𝑥 ∈ (−∞, 0] ∩ 𝑧 ∈ [−𝐻, 0]     (1) 

Its solution is sought in the form of the displacement potential 𝜙(𝑥, 𝑧, 𝑡). The boundary 

condition (BC) at the seabed prevents penetration of the fluid into the seabed:  

𝜙𝑧(𝑥, −𝐻, 𝑡) = 0            (2) 

where the subscript denotes derivatives. The fluid pressure is given by the linearized 

Bernoulli equation: 

𝑝(𝑥, 𝑧, 𝑡) = −𝜌𝑤 (�̈� + 𝑔(𝜙𝑧 + 𝑧))       (3) 

where the linearization removes the dynamic pressure term 1 2⁄ (�̇�𝑥
2 + �̇�𝑧

2), 𝜌𝑤 is the fluid 

density, 𝑔 the gravitational constant and the dot denotes time derivatives. At the surface the 

fluid pressure has to satisfy the following 𝑥-dependent BC: 

𝑝(𝑥, 0, 𝑡) = {
𝜌𝑖𝐴�̈� + 𝐸𝐼𝑤′′′′    ∀ 𝑥 ∈ (−∞, 0]

0 ∀ 𝑥 ∈ (0, ∞)
      (4) 

where at 𝑥 ≤ 0 the ice is present and so the fluid pressure must balance with the stresses in 

the ice (modeled by a semi-infinite Euler-Bernoulli beam) and at 𝑥 > 0 the fluid must 

satisfy the pressure release condition. Additionally, 𝑤(𝑥, 𝑡) is the displacement of the ice, 𝜌𝑖 

its density, 𝐴 the area of its cross-section and 𝐼 the second moment of its area. Continuity 

between ice and fluid dictates that their vertical displacement must be the same along their 

interface and so: 

𝑤(𝑥, 𝑡) = 𝜙𝑧(𝑥, 0, 𝑡)      ∀ 𝑥 ∈ (−∞, 0]       (5) 

Lastly, at the contact interface with the structure, the ice is assumed to crush and so the 

contact force is given by: 

𝐹𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑡) = {
𝜎𝑐𝐴(𝑡) when crushing (stage 1)

𝜎𝑐
∗(𝑡)𝐴∗        when not crushing (stage 2)

    (6) 

where 𝜎𝑐 is the crushing strength of the ice and 𝐴(𝑡) is the contact area. The contact model 

distinguishes between two stages. In the first stage the ice crushes and consequently the 

contact area is growing. Vibrations of the ice can cause a temporary drop in the required 

contact force and so crushing stops, entering stage 2. The time moment the contact force 

starts to drop is defined as 𝑡∗. During stage 2 the area remains constant at 𝐴∗ = 𝐴(𝑡∗) and 

the pressure becomes variable within 𝜎𝑐
∗(𝑡) ∈ (0, 𝜎𝑐). If at some point 𝜎𝑐

∗(𝑡) ≤ 0 contact is 

lost and if 𝜎𝑐
∗(𝑡) ≥ 𝜎𝑐 crushing recommences (back to stage 1). 𝜎𝑐

∗(𝑡) is computed using 
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Lagrangian Multipliers as the contact is assumed to be stiff during the second stage. The 

force has an arm with respect to the neutral axis of the beam, generating a tip moment. Based 

on these loads the BCs for the beam are: 

{
𝐸𝐼𝑤′′′(0, 𝑡) = 𝐹𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑡)

𝐸𝐼𝑤′′(0, 𝑡) = 𝑀𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑡)
        (7) 

Further details of the contact model are given in (Keijdener & Metrikine 2014) but are 

omitted here as they are not relevant for this paper.  

Solution Method 

The defined problem is solved semi-analytically using an approach very similar to the 

Boundary Element Method. First, a Green’s Matrix 𝑮(𝑡) is computed that relates the 

excitation by contact loads 𝑭(𝑡) to the vertical displacement and slope of the beam tip 𝒖(𝑡). 

𝑮(𝑡) is thus a 2x2 matrix. Time-integration is then done based on the convolution of this 

Green’s Matrix with the contact loads, so 𝒖(𝑡) = 𝑮(𝑡) ∗ 𝑭(𝑡), where ∗ denotes convolution.  

The Green’s Matrix is given by the numerically computed Inverse Fourier Transform of the 

frequency domain response �̃�(𝜔) = �̃�−𝟏(𝜔)�̃�(𝜔) of the system to the elementary loading 

functions �̃�. These loading functions act on both of its inputs (the tip force and moment) and 

are introduced to be able to perform the convolution numerically. They can be seen as a 

consequence of approximating the impulse (delta function) with a load that acts over a finite 

duration. The non-linear nature of the contact loads is handled using iterations at each time-

step. 

The transfer functions of the system �̃� are sought using two potentials: 𝜙𝑖𝑐𝑒(𝑥, 𝑧, 𝑡) and 

𝜙𝑜𝑤(𝑥, 𝑧, 𝑡). 𝜙𝑖𝑐𝑒 satisfies the ice-covered surface BC and the open water potential 𝜙𝑜𝑤 

satisfies the free-surface condition, see Eq. (4). Both potentials satisfy their respect BC along 

their entire surface, so ∀ 𝑥 ∈ (−∞, ∞). One half of each potential is then taken and these two 

halves are effectively ‘glued’ together using Eigenfunction Matching so that together they 

again span the full domain (−∞, ∞). This ‘gluing’ process assures that the fluid acts as a 

smooth continum but, since each potential satisfies a different surface BC, one half is now 

covered with ice and the other half is not. An overview of the solution method is shown 

below in figure 2.  
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Figure 2. The solution is found by splitting the problem into two subdomains.  

Using this model the breaking length of the level ice is computed for a range of velocities. 

The breaking length is defined by the location where the bending stress first exceeds the 

flexural strength 𝜎𝑓𝑙 of the ice. The results are studied next. The parameters used for the 

model are the same as those used by Valanto and are: ice thickness ℎ = 1/33.33 m, 𝜌𝑖 =

916  kg/m3, 𝜌𝑤 = 1025  kg/m3, 𝑔 = 9.81  m/s2, 𝐻 = 1  m, 𝜎𝑐 = 10.67  kN/m2, 𝜎𝑓𝑙 =

23.78 kN/m2, ice-steel friction coefficient 𝜉 = 0.1 [-] and hull angle 𝛼 = 15°.  

COMPARISON OF THE RESULTS 

The graph below shows a comparison between the dynamic breaking length predicted by the 

herein proposed model and Valanto’s model described in (Valanto 1992): 

 

Figure 3. A comparison between the predicted dynamic breaking lengths. The Valanto data 

was directly extracted from figure 20 in the paper. 

The figures shows the breaking lengths predicted by the proposed model, indicated by the 

gray area. A single value for the breaking length does not accurately portray the behavior seen 



POAC17-118 

by the model because at the time of failure a large portion of the ice is very close to failing. 

The gray area indicates the portion of the ice where the bending stress is higher than 99% of 

the yield stress at the moment of failure.  

The graph shows there is a significant difference between the two models, especially at low 

velocities. This indicates that Valanto’s model accounts for more forms of resistance causing 

the ice to fail with smaller breaking lengths and therefore earlier. The extra resistance even 

acts at very low velocities. This discrepancy must be caused by the different assumptions 

made by both models. Below is a list of the major items that are present in Valanto’s model 

but are not present in the proposed model: 

 the dynamic fluid pressure (see Eq. (4)) 

 rotational inertia of the ice 

 steady-flow of the fluid around the vessel 

 the effect of the vessel geometry on the fluid flow 

 axial deformations of the ice 

 ventilation effects 

Of this list only two items were considered as a possible source of significant resistance: the 

rotational inertia and the dynamic pressure. To assess if rotational inertia can generate 

significant resistance it was incorporated by adding 𝜌𝑖𝐽�̈�′ to the equation of motion of the 

ice in Eq. (4), where 𝐽 is the mass moment of inertia of the ice’s cross-section. However, the 

rotational inertia has an insignificant effect (< 1%) on the breaking length and based on this 

was deemed not to be the source of the extra resistance.  

Next the dynamic pressure was checked. Because of its non-linear nature incorporating it into 

the model is a non-trivial step. To gain insight into its effect without have to do a complete 

upgrade of the model to accommodate the nonlinearity, the dynamic pressure was evaluated 

using the solution of the linear model. To this end the transfer functions �̃� were analyzed 

and it was found that the magnitude of the dynamic pressure can be as much as 60% 

compared to the magnitude of all other forces acting on the ice combined (these are the ice 

inertia, bending stresses, hydrostatic pressure and linear hydrodynamic pressure). 

Additionally it was found that the dynamic pressure behaves very much like a rapidly 

decaying exponential, with a maximum magnitude at the contact and then rapidly decaying in 

space.  

Based on this analysis it was concluded that the dynamic pressure is the most likely cause of 

the discrepancy given the that it can take on such large magnitudes in the vicinity of the 

contact. To verify this hypothesis the model is currently being upgraded to include the 

dynamic pressure. Future work based on the upgraded model will give insight into whether 

the dynamic pressure is indeed the source of the discrepancy and thus an essential component 

of dynamic ice-structure interaction.  

CONCLUSIONS 

This paper showed that a 2D ice-structure interaction model based on a linear description of 

the fluid, i.e. incompressible, inviscid and irrotational fluid together with the linearized 

Bernoulli equation for the fluid pressure, gives a significant error in its prediction of the 

dependence of the breaking length of level ice on the interaction velocity. The most likely 
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cause for this discrepancy was identified as the omission of the dynamic pressure term that 

was neglected when the Bernoulli equation was linearized. Future work aims to verify 

whether this term is indeed the source of the discrepancy and whether this terms is essential 

for the correct prediction of the dynamic breaking length of level ice and should be included 

in ice-structure interaction models.  
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