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ABSTRACT 

Not only in the Arctic, but also well outside the Arctic, icebergs can be a danger to buried 
offshore pipelines due to seabed gouging. As it is not economically feasible to bury these 
pipelines at depths where soil deformations are small, these pipelines are buried at sub-gouge 
depths where the soil experiences significant plastic deformations. Before considering the 
sub-gouge soil deformations that are vital to determine optimal pipeline burial depths, a better 
understanding of dynamic iceberg-soil interaction during seabed gouging is required. 

In the past, several models have been developed to describe the interaction forces between an 
iceberg and the soil in front of the iceberg keel based on static soil failure theory or from ex-
perimental observations. These models do not fully account for the dynamic behaviour of the 
iceberg, nor do they consider the corresponding response of the sub-gouge soil. In fact, how 
the extent of sub-gouge deformations depends on the geotechnical parameters of the seabed is 
not at all well understood. Therefore, a three-dimensional physics-based model is being de-
veloped that describes the transient iceberg-soil interaction (i) based on plasticity theory, (ii) 
accounting for the dynamic response of the iceberg during gouging and (iii) including the hy-
drodynamics of the iceberg. This paper presents a two-dimensional version of the iceberg-soil 
interaction model assuming the iceberg keel to be rigid and plane-strain conditions for the 
soil. Model predictions are presented and compared for different seabed characteristics. 

KEY WORDS: Iceberg dynamics; iceberg-soil interaction; sub-gouge deformation. 

INTRODUCTION 

Especially in the Arctic and other ice-infested areas, it is attractive to transport hydrocarbons, 
for example from offshore production locations to shore, or across water bodies between land 
masses, by means of marine pipelines, thereby largely evading the interaction with sea ice. 
Nevertheless, icebergs and large ice ridges can be a severe danger to marine pipelines as they 
ground and gouge the seabed. Generally, marine pipelines in iceberg areas are buried in a 
trench to protect these pipelines from damage due to iceberg gouging. Figure 1 shows a sim-
plified representation of the interaction between an iceberg keel and the seabed near a pipe-
line taken from Barrette (2011), where BD is the pipeline burial depth. As Barrette (2011) 
states, it is not economically feasible to bury pipelines in zone 3, where the soil deformations 
are negligible and therefore pipelines are buried in zone 2, where the soil experiences signifi-
cant plastic deformations. Understanding the severity of these sub-gouge deformations is vital 
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for pipeline design and in particular to determine the required depth of pipeline trenches. 

 
Figure 1. Iceberg keel-seabed interaction near a trenched pipeline (Barrette, 2011). 

In the past, several models were developed to describe the interaction between an iceberg 
keel and the seabed based on static soil failure or from experimental observations. In the two-
dimensional gouging models by Kioka and Saeki (1995) and Yoon et al. (1997) for example, 
assumptions are made that limit the results. The model presented by Kioka and Saeki (1995) 
assumes that during gouging the iceberg moves with a constant velocity and that the iceberg 
moves along a so-called pre-described gouging curve, while the gouging model by Yoon et al. 
(1997) neglects the rotational motion of the iceberg. Clearly, the velocity of an iceberg during 
gouging is not constant, but decreases due to the soil resistance. In the iceberg-soil interaction 
model presented in this contribution, the deceleration of the iceberg as it hits and fails the 
seabed, as well as the rotation of the iceberg, are included to properly account for the dynam-
ic response of the iceberg during seabed gouging. The seabed resistance forces are incorpo-
rated into the model quasi-statically, by means of the passive soil-resistance calculated using 
a slightly adapted version of the theory of Hettiaratchi and Reece (1974). 

 

A PHYSICS-BASED MODEL FOR DYNAMIC ICEBERG-SOIL INTERACTION 

Ultimately, it is our aim to develop a three-dimensional physics-based model that describes 
the transient iceberg-soil interaction that accounts for the plastic deformation of the soil to 
correctly describe the corresponding soil resistance against iceberg gouging. This paper pre-
sents the first stage of this project and regards the two-dimensional version of the iceberg-soil 
interaction model. The two-dimensional model for dynamic iceberg-soil interaction during 
seabed gouging is presented here for two separate cases: 1) the free-floating iceberg before 
grounding, which is aimed at specifically considering the hydrodynamics of the iceberg, and 
2) the interaction of the iceberg with the soil as it grounds, specifically focused on the ice-
berg-soil interaction. In the following, first the general assumptions and modelling constraints, 
i.e. the assumptions and constraints that apply to both cases, are discussed. Subsequently, the 
modelling of the two separate cases is discussed and the corresponding model results are pre-
sented consecutively. Finally, conclusions regarding the current version of the iceberg goug-
ing model are given and our ideas for future improvements are discussed. 

Reference iceberg “Bertha” and the iceberg model 

The iceberg-soil interaction model discussed here allows for various iceberg geometries. As a 
basis for possible iceberg geometries, data is used from the Dynamics of Iceberg Grounding 
and Scouring (DIGS) field experiments performed in the Eastern Canadian Continental Shelf, 
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Labrador, in August 1985 (Hodgson et al., 1988). For the purpose of this paper however, 
from the DIGS experiments, only the iceberg Bertha is considered. 

Iceberg Bertha grounded at a water-depth of 107 m on the north-western edge of Makkovik 
Bank, where water depths range from a minimum of 102 m near the south-eastern end to a 
maximum of 135 m at the north-western end. At this location, the seabed is relatively smooth 
and flat with local slopes averaging 1:50. Figure 2a depicts the above- and below-water shape 
and dimensions of iceberg Bertha that were determined after the iceberg floated free due to a 
calving event, which additionally caused the iceberg to significantly roll and yaw. 

 
Figure 2. a) Generated perspective of iceberg Bertha (ref Hodgson 1988); 

b) Dimensions of iceberg Bertha simplified by two elliptical cone frustums. 

The iceberg itself is assumed to be rigid. This means that the iceberg does not deform upon 
interaction with the water or the soil, nor does it change its shape over time due to thawing or 
other external influences. To straightforwardly determine the wind and current loads on the 
iceberg, as well as to calculate the weight and buoyancy of the iceberg, the shape of iceberg 
Bertha is assumed as depicted in Figure 2b. Maintaining the dimensions of the generated per-
spective of iceberg Bertha in Figure 2, the ratio between freeboard and keel height, as well as 
the total volume of the iceberg are too high. The width and length of the elliptical base are 
therefore respectively chosen as 100 m and 120 m, while the mass and the mass moment of 
inertia, as well as the freeboard and the keel height of the iceberg model vary depending on 
the angle αib. Choosing 50iba = ° , the iceberg has a freeboard (H) and a keel height (T) of 
respectively 18,2 m and 91,8 m, a mass of 2,2 Mt and a mass moment of inertia of 7,0 Gt·m2. 

 

THE FREE-FLOATING ICEBERG BEFORE GROUNDING 

To capture the behaviour of the iceberg during seabed gouging, first it is important to de-
scribe the motions of the iceberg before grounding. As long as the iceberg does not interact 
with the seabed, the iceberg is modelled as a free-floating body, only interacting with the air 
and the water. This also means that the interaction of the iceberg with other occurrences of 
ice, such as sea ice or other icebergs, is disregarded.  

Figure 3 illustrates the dimensions and the degrees of freedom of the free-floating iceberg, 
the gravity and buoyancy forces, as well as the aero- and hydrodynamic forces acting on the 
iceberg. The degrees of freedom of the iceberg, i.e. its surge, heave and pitch, are respective-
ly denoted as xib, zib and 𝜃ib. Here, the aero- and hydrodynamic forces applied to the iceberg 
are all assumed to work in the direction of the x-axis, thus being the direction of forward mo-
tion for the iceberg. Additionally, the heave of the iceberg is described in the direction of the 
z-axis, while 𝜃 denotes the pitch of the iceberg.  
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For large icebergs, the drift of icebergs is governed by ocean currents as the influence of 
waves on icebergs decreases as the iceberg size increases (Diemand, 2001). Therefore, the 
contributions of incident, diffracted and radiated waves are assumed negligible, thereby im-
plying that the damping associated with body-induced wave radiation is negligible as well. 
As a result, only viscous damping is accounted for. Then, as the Coriolis force is a three-
dimensional phenomenon and the modelling applied here is two-dimensional, its influence is 
not included. Additionally, at the scale of an iceberg gouging event, the influence of the Cor-
iolis force is likely to be negligible and iceberg trajectories may be assumed as a straight line. 

 
Figure 3. The degrees of freedom of and the forces on a free-floating iceberg. 

Thus, the system of equations of motion for the free-floating iceberg reads: 
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Here, FA and FH are respectively the resultant aero- and hydrodynamic drag forces working 
on the iceberg, while aA and aH are the arms of the corresponding forces with respect to the 
centre of gravity G of the iceberg. As the iceberg is simplified as an elliptical cylinder and its 
orientation and dimensions in the two-dimensional plane are assumed to be stable, i.e. it does 
not roll or yaw, its width W is constant over the height. Consequently, the aero- and hydro-
dynamic forces working on the iceberg are respectively obtained as: 

( )( ) ( )
0

1
2A a a a ib a ib

H

F C W u z x u z x dzr
-

= - -ò   (2) 

( )( ) ( )1
2

0

T

H w w w ib w ibF C W u z x u z x dzr= - -ò   (3) 

Here, ρa, ρw, Ca and Cw are respectively the air density, the water density and the air and wa-
ter drag coefficients. Furthermore, ( )au z  and ( )wu z  are respectively the wind (air) and 
current (water) profiles that are applied over the projected heights H and T of respectively the 
sail and the keel of the iceberg. The wind and current profiles are described as a function of 
the z-coordinate as: 

( ) ( )
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 (4) 

Furthermore in Eq. (1), FG and FB respectively denote the weight and the buoyancy of the 
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iceberg, and aRM is the stability lever arm, i.e. the arm between the centre of gravity and the 
centre of buoyancy due to pitch. The weight of the iceberg is assumed constant throughout 
and is straightforwardly obtained from the volume of its assumed shape and its density. The 
submerged volume, and thus the buoyancy of the iceberg, follows from the position of the 
iceberg in the water and thus depends on the heave and pitch motions of the iceberg. As stat-
ed previously, in this model only the viscous damping is accounted for, which in surge direc-
tion is already included in the aero- and hydrodynamic drag forces. The hydrodynamic vis-
cous damping coefficients in respectively heave and pitch direction, denoted in Eq. (1) as 
Bzz and Bθθ, are expressed in terms of the corresponding damping ratios as: 

( ) ( )2 1 ; 2 1 .zz z zz zB A M B A Jqq q qq qz w z w= + = +  (5) 

For this model, the heave and pitch damping ratios are respectively chosen as 0,04zz =  and 
0,02qz =  based on experimental values from free motion decay tests on a cylindrical object 

in water (Sudhakar and Nallayarasu, 2011). Furthermore, ωz and ωθ are the damped natural 
heave and pitch frequencies that follow from the uncoupled equations of motions for heave 
and pitch, thus found as: 
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Added Mass of a Free-Floating Iceberg in Variable Water Depth 

The hydrodynamic added mass coefficients, respectively denoted in Eq.s (1), (5) and (6) 
as Axx, Azz and Aθθ for respectively surge, heave and pitch, are derived from literature (Bai, 
1976, Bass and Sen, 1985). In these contributions, the hydrodynamic coefficients are ob-
tained using the potential flow theory by assuming that the flow is inviscid, irrotational and 
incompressible. The value of the hydrodynamic added mass coefficients for surge and heave 
depend on the distance between the bottom of the iceberg and the seabed, or more specifical-
ly, on the ratio between the water depth D and the height of the iceberg keel T. Figure 4 de-
picts the dependency of the added mass coefficients respectively in surge and heave direc-
tions as a function of the ratio D/T. The influence of the ratio D/T on the added mass coeffi-
cient for pitch however is negligible and therefore assumed constant.  

 
Figure 4. Dependency of the added mass coefficients on the iceberg-seabed distance. 

In Figure 4, the added mass coefficients obtained by Bass and Sen (1985) and Bai (1976) for 
different values of the ratio D/T are given by blue dots, while the continuous red line gives a 
power fit for surge and an exponential fit for heave. For surge, the influence of the added 
mass coefficient on the ratio D/T appears to be relatively small. For heave however, the influ-
ence of the ratio D/T is significant. In fact, according to Bai (1976), the added mass of the 
iceberg in heave direction becomes infinitely large as the bottom of the iceberg touches the 
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seabed. In Figure 4b, the data-points have been fitted using a 3rd order polynomial resulting in 
an added mass coefficient for heave that is 10 times as large as the actual mass of the iceberg. 
For example, assuming that the free-floating iceberg is in a constant water depth of 150 m, i.e. 

1,5D T = , the added mass coefficients for surge, heave and pitch are constant and respec-
tively found as 0,32xxA = , 0,88zzA =  and 0,04Aqq = . 

Response of the Free-Floating Iceberg 

The response of the free-floating iceberg subjected to winds and currents is obtained in the 
time domain by solving the system of ordinary differential Eq.s (1) using a Runge-Kutta 
scheme. To verify the modelling of the free-floating iceberg, the initial conditions for the ice-
berg are deliberately chosen far from its equilibrium condition. In this case, the initial posi-
tion of the iceberg is arbitrarily chosen such that its top surface equals the waterline. For the 
wind and current velocities common average values are chosen as 30 km/h and 1,5 m/s re-
spectively. As depicted by Figure 5 for two different icebergs, upon release from its initial 
position, the iceberg will ultimately attain a certain steady-state condition that is independent 
of the starting position, moving at a constant velocity. The iceberg reaches this constant ve-
locity after nearly six hours covering a distance of about 30 km. Additionally, due to its initial 
vertical position and its own buoyancy, the iceberg oscillates for about 12 minutes before 
reaching a constant draft. Apparently, the rotation of the iceberg due to the applied constant 
wind and current is negligible. Note here that during the steady-state orientation, the icebergs 
restoring moment due to its pitch is equal to the moment caused by winds and currents. 

 
Figure 5. Response of the free-floating iceberg: a) surge; b) surge velocity; c) heave; d) pitch. 

 

THE GROUNDING ICEBERG AND SEABED GOUGING 

When an iceberg hits a seabed, the iceberg will penetrate that seabed as depicted in Figure 6b. 
Because of its inertia, the iceberg continues to move, leaving a seabed gouge in his wake, un-
til the total kinetic energy of the iceberg has been dissipated by the iceberg-seabed interaction. 
The length and depth of these gouges depend on the mass, the shape and the drift velocity of 
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the iceberg, but also on the bathymetry of the seabed and the mechanical behaviour of the 
seabed soil (Green et al., 1983). Nevertheless, for a free-floating iceberg to cause seabed 
gouging, the seabed must at least have a slope somewhere. Although different configurations 
can be chosen, in this paper, the interaction of an iceberg with a continuous and constant 
sloping seabed is considered. Before considering the iceberg-seabed interaction in two-
dimensional space using plane-strain conditions for the soil, first the interaction of the iceberg 
with a rigid seabed is addressed as a benchmark for the iceberg-soil interaction problem. 

The Interaction of a Grounding Iceberg with a Rigid Seabed 

To model the interaction with the rigid seabed, the first contact between iceberg and seabed is 
assumed to always occur at the corner C of the iceberg as depicted in Figure 6a. The normal 
and tangential forces that keep the iceberg from penetrating the rigid seabed are denoted as 
FN and FT respectively. Adding the normal and tangential forces to the system of equations of 
motion (1), previously obtained for the free-floating iceberg, yields the system of equations 
for the iceberg-rigid-seabed-interaction as: 
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Here, rN and rT are the arms of respectively the normal and tangential forces with respect to 
the centre of gravity of the iceberg. The relation between the normal force FN and the tangen-
tial force FT is given the Coulomb friction coefficient µ, so that 

T NF Fµ= . Consequently, the 
given system of equations of motion consists of four unknowns, being the degrees of freedom 
of the iceberg and the normal force FN and thus, to solve the above system of equations of 
motion, an additional equation is required. This equation follows from the change of the ice-
berg momentum due to interaction with the rigid seabed at point C. Accounting for the con-
tributions due to the change both in linear momentum, i.e. the impulse, and in angular mo-
mentum, sometimes referred to as the angular impulse, over time, the velocity change of 
point C in the direction normal to the seabed slope over time is obtained as: 

21lin ang
N N N N N T

N T

dv dv dv r r r
F F

dt dt dt M J J
æ ö

= + = + -ç ÷ç ÷
è ø

  (8) 

Here, vN denotes the velocity of the iceberg in the direction normal to the seabed slope. Ac-
counting for the friction relation, then yields Eq. (8) as: 

( )1 0N N
N T N

r dv
r r F

M J dt
µ

ì ü
+ - - =í ý

î þ
  (9) 

For the remainder of the iceberg-rigid-seabed-interaction, it is assumed that the corner C re-
mains on the seabed slope. Therefore, after the initial interaction of the iceberg with the rigid 
seabed, the velocity vN in the direction normal to the seabed slope, as well as its time deriva-
tive, are equal to zero. However, right before the iceberg hits the seabed, the velocity of point 
C normal to the seabed slope is not equal to zero. In fact, right before the first iceberg-seabed 
interaction, the normal velocity vN is known from the system of equations for the free-floating 
iceberg and the normal force FN can thus be obtained by solving Eq. (9) numerically.  

When the iceberg moves further along the seabed slope and the corner D also hits the seabed, 
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the bottom of the iceberg comes in full contact with the rigid seabed until the iceberg stops 
moving completely. In this case, the point of application of the normal and tangential forces 
is shifted to the centre-line of the iceberg. Note here that the above system of equations is on-
ly valid as long as the normal force FN yields soil compression. Furthermore, note that when 
the iceberg hits the seabed, the iceberg keel is equal to the water depth and the ratio D/T is 
thus equal to 1. The corresponding added mass coefficients in Eq. (7) for surge, heave and 
pitch are respectively found as 0,41xxA = , 10zzA =  and 0,04Aqq = . 

Iceberg-Soil Interaction for an Iceberg Penetrating the Seabed 

When the iceberg interacts with a non-rigid seabed the corner C of the iceberg will penetrate 
the seabed as depicted in Figure 6b. The soil is assumed to behave as a cohesionless frictional 
material responding to external loads under fully drained conditions, i.e. with no generation 
of excess pore pressures (this assumption can be adopted for highly permeable sandy soils). 
During seabed gouging, the resistance of the soil to the iceberg motion is partly due to the 
deformation of the soil in front of the iceberg, as well as due to the frictional resistance at the 
bottom of the iceberg. The soil reaction in front of the iceberg is determined as a quasi-static 
passive force according to the plasticity approach by Hettiaratchi and Reece (1974). The 
normal and tangential resistance at the bottom of the iceberg are determined by a traditional 
bearing capacity equation for shallow foundations under inclined loads (Salgado, 2008). 

 
Figure 6. a) The iceberg hitting a rigid seabed; b) The iceberg penetrating the real-life seabed. 

 
Figure 7. The resultant passive soil resistance force. 

The resultant passive soil resistance force R is depicted in Figure 7. According to Hettiaratchi 
and Reece (1974), the resultant passive soil resistance force for a cohesionless soil reads: 

2
1 2 qR R R qK h K hg g ¢= + = +   (10) 

Here, q is the surcharge on the seabed surface, i.e. the amount of soil that is removed by the 
gouging of the iceberg and accumulates at the front and side of the iceberg, thereby yielding 
additional soil resistance, and γ’ is the effective unit weight of the soil, while Kq and Kγ are 
the corresponding dimensionless soil resistance coefficients taken from the charts by 
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Hettiaratchi and Reece (1974). Additionally, h is the vertical distance between the corner C of 
the iceberg and the seabed slope. Following Hettiaratchi and Reece (1975), the angle δ of the 
resistance force R for cohesionless soils follows from the angle of internal friction of the soil 
ϕ and the difference between the rake angle α and the angle β that describes the direction of 
forward motion of the iceberg-seabed interface with respect to the horizontal, so that: 

( )( )
( )( )

sin sin 270 2
tan

1 sin cos 270 2
f f a b

d
f f a b
× - - -

=
+ × - - -

  (11) 

The point of application of the force R cannot be determined exactly because the actual dis-
tribution of soil stresses along the iceberg edge is unknown. According to Hettiaratchi and 
Reece (1974), the vertical distance between the seabed surface and the point of application of 
the force R, denoted as hR, can be approximated as: 

1 23 4
6R

R R
h h

R
+æ ö

= ç ÷
è ø

  (12) 

As the gouging depth of an iceberg is generally smaller than its width, the ultimate bearing 
capacity of the iceberg during seabed gouging is determined using Terzaghi’s bearing capaci-
ty equation for shallow foundations in combination with the capacity correction factors by 
Brinch Hansen (1970). Accordingly, the maximum vertical pressure that the soil is able to 
provide at the bottom of the iceberg is determined as:  

0,3ultq s d i b g BNg g g g g gg ¢=   (13) 

Here, a factor 0,3 is used to account for the elliptical shape of the iceberg bottom instead of a 
factor 0,5 that is used for a strip footing. Furthermore, sγ and dγ are respectively shape and 
depth factors, while iγ, bγ and gγ are load inclination, base inclination and ground inclination 
factors respectively. The expressions and values for these factors are taken from Salgado 
(2008). As before, γ’ is the effective unit weight of the soil, while Nγ is the corresponding 
bearing capacity factor and B equals the contact length between the iceberg and the soil dur-
ing gouging, which varies over time. The normal force FN is then found at each time step as 
N ult cF q A= , where Ac yields the soil-iceberg contact area during seabed gouging. Here, both 

the normal force FN and the tangential force FT are assumed to act in the middle of the con-
tact length. To determine the ratio between the normal and the tangential force, the load incli-
nation factor must be known and vice versa. Since both the ratio and the load inclination fac-
tor are unknown prior to each time step, the load inclination factor is found iteratively. Initial-
ly, the load inclination factor iγ is set equal to 1, i.e. a vertical load reaction, or when available, 
equal to the final load inclination factor from the previous time step. Then, the corresponding 
motions of the iceberg are determined numerically and the normal and tangential forces are 
back-calculated from the system of equations of motion. The ratio between the normal and 
tangential force yields a new load inclination factor as input for the same time step. The itera-
tion is repeated until the load inclination factor iγ converges to a given threshold. The ratio 
between FT and FN has a lower bound given by the soil-iceberg interface friction angle, rele-
vant to the limit case of horizontal sliding of the bottom iceberg surface.  

Accounting for both the resistance of the soil in front and at the bottom of the iceberg, the 
system of equations of motion for the iceberg follows as: 
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Here, Rx and Rz are respectively the horizontal and vertical components of the resistance force 
R and are thus respectively obtained as ( )cosx ib rR R q d= +  and ( )sinz ib rR R q d= + . It 
should here be noted that in the model by Hettiaratchi and Reece, the seabed surface is as-
sumed horizontal, while our seabed has a constant positive slope. The slope is accounted for 
by including the soil volume of the seabed slope in the surcharge. Additionally, Hettiaratchi 
and Reece assume that the soil-structure interface does not rotate, but translates at a suffi-
ciently slow pace so that inertia loads are negligible. Here, the rotation of the iceberg is in-
corporated. The influence of the rotation on the passive soil resistance however is neglected 
by choosing the time step sufficiently small. In addition, this reduces the error by neglecting 
the influence of the inertia and allows for the quasi-static determination of the soil resistance. 

The Iceberg Hitting a Rigid Seabed Versus the Iceberg Penetrating the Seabed 

The interaction of an iceberg hitting the rigid seabed, as well as the process of seabed goug-
ing of an iceberg has been simulated solving the corresponding systems of equations in the 
time domain. The resulting iceberg response is depicted in Figure 8, where the continuous red 
and dashed blue lines respectively give the interaction with the rigid and the real seabed. 

 
Figure 8. Iceberg interacting with the seabed: a) surge; b) surge velocity; c) heave; d) pitch. 

For both considered cases, the initial conditions are assumed equal to the steady-state condi-
tions obtained for the free-floating iceberg response. As the hydrodynamic parameters are 
chosen equal to those for the free-floating iceberg as well, the iceberg-seabed interaction may 
be considered to start at the end of the free-floating iceberg response. The iceberg-seabed in-
teraction process consists of two distinct phases, being (i) the phase where the water depth 
decreases due to the seabed slope until the iceberg touches the seabed, and (ii) the phase of 
interaction between the iceberg and the seabed until the iceberg comes to a standstill. Evi-
dently, the first phase is identical for the two cases, and the difference in Figure 8 only occurs 
after the iceberg hits the seabed. 
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Here, the seabed consists of sand with a density 32080s kg mr =  and has a constant slope 
of 2j = ° . The angle of internal friction of the soil is chosen as 35f = ° and the cohesion is 
assumed zero. Furthermore, the iceberg-seabed friction coefficient is chosen as 0,39µ = . 

Figure 8a and Figure 8b show that the distance travelled by the iceberg interacting with the 
rigid seabed is significantly larger than that of the iceberg gouging the seabed. As the iceberg 
cannot penetrate and therefore does not gouge the rigid seabed, the resistance of the rigid 
seabed against the iceberg motion exclusively consists of the Coulomb friction and thereby 
highly underestimates the seabed resistance. The distance travelled by the iceberg from the 
point of first contact with the seabed until it comes to a standstill should therefore be consid-
ered as an absolute upper limit for seabed gouging. Additionally, it can be seen from Figure 
8c and Figure 8d that the iceberg interacting with the rigid seabed moves up the seabed slope, 
while it tilts backward until the iceberg rotation coincides with that of the rigid seabed. The 
iceberg gouging the seabed however, does not follow the sloping seabed at all. Due to the 
significantly higher seabed resistance forces, the iceberg tilts forward and digs itself into the 
soil, thereby further increasing the seabed soil resistance causing a fast deceleration of the 
iceberg. 

 
Figure 9. a) gouge depth for several icebergs; b) gouge length versus rake angle for several 
internal friction angles; c) maximum gouge depth versus rake angle for several internal fric-
tion angles; d) maximum gouge depth versus rake angle for varying added mass coefficients. 

Figure 9a shows the gouge depth, or seabed penetration, as a function of time for three ice-
bergs with different rake angles. These penetrations show an increasing trend due to the con-
stant seabed slope. It is striking that the iceberg Bertha, with a rake angle 50iba = ° nearly 
has the smallest maximum penetration and requires the shortest time to come to a standstill, 
which in fact does not necessarily mean that it has the shortest gouging length. This is veri-
fied by Figure 9b that shows the relation between the gouging length and the rake angle for 
three purely frictional sands with an internal friction angle 30f = °, 35f = ° and 40f = °  
respectively. From Figure 9b, it appears that the influence of the rake angle on the gouging 
length is larger the influence of the soil strength. Figure 9c shows the maximum gouge depth, 
or maximum seabed penetration, as a function of the iceberg rake angle for the same three 
sands that have previously been considered in Figure 9b. In this case, the gouge depth is 
clearly larger for soils with smaller internal friction angle and vice versa. From Figure 9b and 



POAC17-107 

Figure 9c it follows that the shortest gouges are also the deepest gouges and generally occur 
for icebergs with a rake angle of around 60°. Finally, Figure 9d again shows the maximum 
gouge as a function of the rake angle, but now for three different sets of added mass coeffi-
cients to determine the sensitivity of the iceberg-soil interaction on theses added mass coeffi-
cients. As a general case, the added mass coefficients are used that were previously deter-
mined for a D/T-ratio equal to 1. In addition, we have here considered added mass coeffi-
cients that are twice as large, as well as added mass coefficients that are equal to 0. It should 
be noted here that the added mass coefficients used in this paper are derived on measurements 
of the added mass of two-dimensional cylinders heaving in a finite water depth. For frustum-
shaped icebergs with small rake angles, the added mass coefficients are therefore slightly 
overestimated. However, for frustum-shaped icebergs with large rake angles, this difference 
may be significant and the results may be unreliable.  

 

DISCUSSION, CONCLUSIONS AND FURTHER WORK 

This contribution present the results of the first stage of an attempt to dynamically correct 
model both the free-floating iceberg as well as the dynamic iceberg-soil interaction during 
seabed gouging. Clearly, as the resulting two-dimensional iceberg model is a work-in-
progress, the model is still subject to significant improvements. 

First of all, the currently assumed shape of iceberg Bertha is far from realistic. To incorporate 
the variation of the geometry of the iceberg, and thus to consider more realistic iceberg 
shapes, the iceberg is considered to be comprised of a set of horizontal layers, where the 
width, length and side angle may be chosen independently for each layer. This yields a varia-
tion of the hydrodynamics over the height of the iceberg, as well as the ability to change the 
angle of the iceberg-soil interface. Furthermore, to more correctly describe the iceberg-soil 
interaction during seabed gouging, it is envisaged to introduce a failure criterion that de-
scribes the failure of the iceberg keel, thereby allowing the iceberg geometry to change due to 
its interaction with the soil. Although posing considerable modelling challenges, this will ad-
ditionally allow us to account for the stability of the iceberg during seabed gouging.  
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