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ABSTRACT  

The question, if the distribution law of model scale ice load depends on the diameter of a 
cylindrical indenter and its indentation speed, is still open. In new ice tank facility of Krylov 
Research Centre (St. Petersburg) a series of experiments with cylindrical indenters of 
diameters 30, 40 and 96 mm were conducted. In these experiments global ice loads were 
recorded with high sampling rate. Two ice fields were involved into experiments – with 
thickness of 55 and 72 mm. The indentation experiments considered in the paper were 
conducted at speeds of 0.025, 0.1, 0.15, 0.3 m/s.   
Tests on distribution law with implementation of D’Agostino’s method were performed. 
Results of statistical processing and ice load process’ distribution law evaluation of obtained 
time series are presented in the paper. The distribution law of global load process appeared to 
be speed dependent. Probably it also depends on indenter’s diameter. Model ice parameters 
for conducted experiments are provided in the paper. Comparison with results, which were 
obtained earlier, is performed.  
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NOMENCLATURE  

In the text all random variables are denoted with bold italic letters, constant values and non-
random variables – with regular italic. 

𝑿 𝑡  – Stochastic process of ice load. 

𝑋 – Time series (single record) of process 𝑿 𝑡  

𝑛 – Number of data points in the time series 𝑋. 
𝑞 – Sampling rate of the time series 𝑋. 

𝝃 – Statistical population. 

𝜇) – 𝑖-th central moment of the statistical population 𝝃. 

𝛾, – Pearson’s asymmetry coefficient of the statistical population 𝝃. 

𝒙 , 𝒛  – Random samples taken from statistical populations; random data points from 
these samples are denoted with 𝒙) and 𝒛). Particular samples with particular data points are 
denoted with 𝑥 , 𝑧 ; particular data points are denoted with 𝑥) and 𝑧). 
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𝑁, 𝑘 – Sizes of the samples 𝒙  and 𝒛  respectively. 

𝑙 – distance, which separates two almost uncorrelated data points in time series 𝑋. 
𝒙 – Sample average. Value of 𝒙 found for the particular sample 𝑥  is denoted with 𝑥.
  

𝝈5 – The point estimator of standard deviation of 𝒁. Its particular value is denoted 𝜎5.   

𝒎) – 𝑖-th central moment of sample. 

𝒈, – Pearson’s asymmetry coefficient of sample. Value of it found for the particular 
sample 𝑥  is denoted with 𝑔,. 

𝒁 – Statistics of D’Agostino’s test. 

𝒀,𝑊, 𝛼, 𝛿	– Components of expression for 𝒁. 
𝐻B – Hypothesis “Population 𝝃 is normally distributed”. 

𝐻B′  – Hypothesis “Mean value of 𝒁 is 0”. 

𝐻B′′ – Hypothesis “Standard deviation of 𝒁 is 1”. 

𝜒DE 𝑘 − 1  – 𝑝-th quantile of 𝜒E distribution with 𝑘 − 1 dimensions of freedom. 

𝒓JKL 𝜏 	– Estimator of the autocorrelation function of the stationary process 𝑋 𝑡 . Value of  
it found for the particular sample 𝑥  is denoted with 𝑟JKL 𝜏 	. 
𝜏 – Time lag in seconds. 

INTRODUCTION  

This paper continues the study started earlier by Zvyagin & Sazonov (2015), Zvyagin (2016) 
and Dobrodeev et al. (2016). Aim of this study is to make reliable stochastic model of ice 
load dynamics in the case of offshore structures with column supports. For that reason tests 
with cylindrical indenters of different diameters were performed in the ice tank of Krylov 
State Research Centre. Global loads caused by the model ice on these cylindrical indenters 
were recorded and studied.  
The stochastic process model was chosen for ice load because of crushing process complexity. 
Such mathematical model is applied since the paper of Sundararajan and Reddy (1973). 
According to Bjerkas (2004) stationarity of ice loads is associated with high indentation 
speed and non-simultaneous brittle ice failure mode. Later Karna et al. (2007) emphasized 
that the stochastic process approach is applicable to describe loads when sheet of plain ice is 
failing by continuous crushing, and the structure has vertical walls.  
Stationarity and normality or lognormality of ice load stochastic process provides multiple 
benefits for analysis and simulation. Sodhi (1998) have presented records of loads caused by 
freshwater ice on vertical T-shaped, 25-mm thick steel plates with 49.5-mm wide contact area 
at high speed (409.3 mm/s and 401.3 mm/s). These records visually are looking like as time 
series of stationary processes, though investigation on that was not presented. Example of 
normal stationary ice load process was presented by Guo (2012). For simulation of a 
stationary lognormal process the simulation of logarithm of it, which is a normal process, can 
be implemented. Autocorrelation function of lognormal process and autocorrelation function 
of its logarithm are related as described by Zvyagin and Sazonov (2014). 
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Main aims of the previous studies performed by the authors were: verification of ice load 
process stationarity in wide sense, evaluation of parameters of process and analysis of its 
autocorrelation function (ACF). Study of loads on indenters of 20 mm diameter at 0.01 m/s 
indentation speed against 15 and 19 mm thick ice fields have revealed lognormal distribution 
and features of stationarity (Dobrodeev et. al, 2016). At the same time record of load on 100 
mm width cylinder against 30 mm thick ice made with speed of 0.084 m/s has performed 
normal behavior (Zvyagin and Sazonov, 2015). Appearance of such differences was not 
explained in previous studies and needs more detailed investigation. 
In recent study new records of global ice loads were investigated on their 
normality/lognormality. Connection of indentation velocity and indenter diameter with load 
process distribution law is proposed.  

The structure of the paper is as following. First Section is introductive. In the second Section 
parameters of experiments in ice tank are listed. In the third Section details of application of 
D’Agostino’s method to load process normality test are described. In the next three Sections 
analysis of ice load records measured in experiments in the ice tank is made. After that 
discussion and conclusions are made. 

DESCRIPTION OF EXPERIMENTS IN ICE TANK  

Experiments with cylindrical indenter were performed in the new ice tank of Krylov State 
Research Centre. Detailed description of this facility was earlier made by Timofeev et. al 
(2015). Three different indenters of 30 mm, 40 mm and 96 mm diameter were used for tests 
in two ice sheets with thickness 55 mm and 72 mm. Speeds of indentation were 0.025, 0.1, 
0.15 and 0.3 m/s. 
Tests were performed using FG (Fine Grain) grained model ice. Parameters of ice sheets used 
in experiments are provided in the Table 1. Ice load on indenter was measured by the 
dynamometer. Experiments were performed using the principle of inversed motion. The 
method of indentation experiments is fully described in Dobrodeev et al. (2016). The picture 
of facility and the example of time history of load measured in test with cylindrical indenter 
of 30 mm diameter against level ice with thickness of 72 mm are presented in Figure 1. 

 
 

Figure 1.  a) Indentation test equipment; b) Time history of ice load measured in indentation 
test against 72 mm thick ice, diameter of indenter is 30 mm. 

Table 1. Parameters of ice fields used in indentation tests (average values) 
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Number Thickness, mm Flexural strength, kPa Compressive 
strength, kPa 

Elastic modulus, 
MPa 

1 55 22.45 29.1 31.75 

2 72 25 47.1 39.25 

AN APPLICATION OF D’AGOSTINO METHOD TO THE ICE LOAD RECORD 
NORMALITY TEST 
In this Section we will follow statistical notations accepted in Kendall and Stuart (1977) and 
D’Agostino and Ralph (1970). As it was said in the Section “Nomenclature”, all random 
variables will be denoted with bold italic letters, and values of those random variables along 
with constants and non-random variables – with regular italic letters.  

Let us consider the model of stochastic process 𝑿 𝑡  for the ice load. The particular record 
of ice load made in the indentation experiment will be denoted with 𝑋 and considered as 
time series of the process 𝑿 𝑡 . To conduct statistical tests we need to get somehow the 
sample 𝑥  of data points from 𝑋. Most of statistical tests are designed for samples, 
elements in which are statistically independent.  

To decrease statistical dependency of data in the sample 𝑥  we shall take distant points 
from 𝑋 for it. The particular method of data points taking will be described later. Then, if 
probabilistic properties of 𝑿 𝑡  are preserved in time, we can consider data points in 𝑥  as 
taken from single statistical population 𝝃. 

Let us consider statistical population 𝝃. Let us denote the Pearson’s asymmetry coefficient of 
it with 𝛾,: 

𝛾, = 𝜇P 𝜇E
P E.            (1) 

Here 𝜇P and 𝜇E are third and second central moments of population 𝝃. Then corresponding 
estimator of 𝛾, , calculated with presence of sample 𝒙  of size 𝑁 taken from that 
population will be 𝒈,: 

𝒈, = 𝒎P 𝒎E
P E	                                         (2

) 

Value of 𝒈, obtained from the sample 𝑥  we shall denote with 𝑔,: 

𝑔, =
QRSQ TU

RVW

QRSQ XU
RVW

T X 𝑁                     (3

) 

where 𝑥 is the average value of 𝑥  and 𝑥) are data points of this sample. 

Null hypothesis to test will be the following: 𝐻B = “Population 𝝃 is normally distributed”. 
To approve or reject 𝐻B the skewness of sample can be investigated with respect of zero 
values of 𝜇P and 𝛾, (1) under the valid hypothesis 𝐻B. In fact, even if 𝐻B is valid the 
particular value of random variable (2) calculated with using of particular 𝑥  by chance ca
n fall rather far from the expected zero value.  How large the discrepancy of (3)  wi
th 0  should be to say, that 𝐻B is invalid? To answer this question the exact distribution 
of (2) under the valid hypothesis 𝐻B should be known. 

The problem is that the distribution of 𝒈, with validity of 𝐻B is depending on the sample 
size 𝑁. With respect of this, D’Agostino (1970) have suggested next transformation of 𝒈,,   
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that allows to consider statistics 𝒁, which distribution under 𝐻B is not depending on 
𝑁: 

𝒀 = 𝒈,
YZ, YZP
[ YSE

  

𝑊E = −1 + 2 P YXZE^YS^B YZ, YZP
YSE YZ_ YZ^ YZ`

− 1   

𝛿 = 1 ln𝑊                              (4
) 

𝛼 = 2 𝑊E − 1  

𝒁 = 𝛿𝑙𝑛 𝒀 𝛼 + 𝒀 𝛼 E + 1 .       

Under the valid hypothesis 𝐻B the statistics 𝒁 is distributed approximately normally with 
parameters 0,1  (D’Agostino & Ralph, 1970). Transformation provided above is applicable 
when 𝑁 ≥ 8. Critical area for 𝒁, which leads to rejection of 𝐻B, can be found by using of 
any table of standard normal distribution percentiles. 

In our study we shall not rely on single value of 𝒁 obtained from single 𝑥 : simulations 
have shown that the probability of type II error in the test of 𝐻B can be rather significant.  

Taking in account assumption of 𝑿 𝑡  stationarity, we shall take 𝑘  samples 𝑥  and 
calculate 𝑘 values of 𝒁 according to (4), which will make sample 𝑧 . For that sample we 
shall perform Chi-squared goodness-of-fit test on normality and also test two hypotheses: 
𝐻B′ =   “Mean value of 𝒁  is 0” and 𝐻B′′ =  “Standard deviation of 𝒁  is 1” using 
corresponding well known confident intervals for normally distributed random variable. If 
both hypotheses 𝐻B′  and 𝐻B′′ are not rejected, then there are not strong objections against 
symmetry of distribution of 𝝃. As soon as an alternative to 𝐻B from our point of view is 
mostly connected with asymmetric distributions, e.g. lognormal, it means that there are no 
strong objections against 𝐻B. This way we shall accept hypothesis 𝐻B. 

Let us take confidence level 0.95, then significance level will be 0.05. Let the critical area 
will be two-sided. The critical area for 𝒛 = 𝒛)f

)g, 𝑛, falling in which leads to rejection of  
𝐻B′ , is the next:  𝑧 > 1.96 𝑘  or 𝑧 < −1.96 𝑘.  

Let us denote with 𝜀, = 𝜒B.BE_E 𝑘 − 1  and 𝜀E = 𝜒B.`^_E 𝑘 − 1  values of 2.5 and 97.5 

percentiles of 𝜒E 𝑘 − 1  distribution. Then the critical area for 𝝈5 = 𝒛) − 𝒛 Ef
)g, 𝑘  

with significant level 0.05 is  𝜎5 < 𝜀, 𝑘 or 𝜎5 > 𝜀E 𝑘. Falling in that critical area leads 
to rejection of 𝐻B′′. 
In the case of testing of 𝑿 𝑡  on lognormality, logarithmic time series should be considered 
instead of original time series. 

LOGNORMAL DISTRIBUTION FOR TESTS AT SPEED 0.025 m/s 
At first we shall consider records of global load measured in experiments with cylinders with 
30 mm and 40 mm diameter at speed 0.025 m/s against 55 and 72 mm thick model ice. These 
records were 40 seconds long, which provides 𝑛 = 4000 data points at 100 Hz sampling 
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rate.  

Let us study how strong the correlation of neighboring data points in load time series is. For 
that purpose the autocorrelation values 𝑟JKL 𝜏 		were calculated according to the formula: 

𝑟JKL 𝜏 = QRSQ QRnopSQ
qrop
RVW sStu

QRSQ Xq
RVW s

 ,                     (5) 

here 𝑥) are sequential data points from ice load time series 𝑋 of size n, 𝑥 = 𝑥)s
)g, 𝑛 is 

the average of all data from 𝑋, 𝑞 1 𝑠  is the sampling rate and 𝜏 𝑠  is the time lag in 
seconds. This way, 𝑟JKL 𝜏 		for every 𝜏 is the value which random autocorrelation function 
estimatior 𝒓JKL 𝜏  took on for particular 𝜏. Plots of these values for considered load time 
series are presented in Figure 2. From Figure 2 it follows that two data points of 𝑋 separated 
by the time lag 𝜏 ≈ 0.1	𝑠 might be almost uncorrelated at least for the observed time series.  

  
Figure 2. Autocorrelation estimation: a) of global ice loads on 30 and 40 mm wide cylinders 
at speed 0.025 m/s against 55 mm and 72 mm thick model ice; b) of global ice loads on 30 

mm wide cylinder at speed 0.3 m/s against 55 mm and 72 mm thick model ice. 

Let us assume that considered ice load records are the time series of lognormally distributed 
stationary process 𝑿 𝑡 . The validity of this assumption will be confirmed later. Let us 
denote the logarithm of time series 𝑋 with 𝑙𝑛𝑋: this way data points of 𝑙𝑛𝑋 are logarithms 
of corresponding data points of 𝑋.   

To study parameters of 𝑙𝑛𝑋 let us compose a sample 𝑥  in the following way: we shall 
take 𝑁 data points from 𝑙𝑛𝑋 separated by 𝑙 =10 data points from each other. With respect 
of 𝑞 = 100	𝐻𝑧 the distance of 10 data points corresponds 0.1 s, and from Figure 2a it 
follows that therefore the data in 𝑥  might be almost uncorrelated. Taking in account our 
assumption on lognormal distribution law the selected data points can be assumed as 
independent. 

Having 𝑥  let us implement D’Agostino’s method described above to calculate one value of 
𝒁 according to (4). Let us then put this value to the sample 𝑧 . Let us repeat the procedure 
of making 𝑥  and obtaining values of 𝒁 by taking further 𝑁  data points from 𝑙𝑛𝑋 
separated by 𝑙 from each other. This way we shall obtain sample 𝑧  of size s

Y∙y
, which is 

floor of ratio 𝑛 𝑁𝑙  and equal to 20 in our particular case. This 𝑧  is finally should be 
tested on the centered standard normal distribution law to check validity of our assumption on 

a) b) 
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lognormal distribution of 𝑿 𝑡 . To perform such a test simple goodness-of-fit Chi squared 
test was used along with testing hypotheses 𝐻B′  and 𝐻B′′ described in the previous section. 

To use D’Agostino’s transform the 𝑁 should be greater than 8. Generally the larger 𝑁, the 
better. But with increasing 𝑁 and with constant 𝑙 and constant time series length 𝑛, the 
size of 𝑧  can become too small to make confident outcomes. The influence of taken value 
of 𝑁 on the properties of sample 𝑧  under the valid 𝐻B should be studied in the future in 
more details. 

For the study described in this section 𝑁 = 20 was taken. Thus with time series of size 𝑛 =
4000 and 𝑙 = 10 size of 𝑧  was 𝑘 =20. For normality goodness-of-fit Chi squared test 
of 𝑧  number of intervals was taken as 4. Here parameters of population are defined as 
0; 1 , so the number of dimensions of freedom of Chi squared test statistic under the null 

hypothesis is 3. Resulting parameters of 𝑧 	obtained for considered ice load time series are 
presented in Table 2 along with values of Chi squared test statistics 𝜒{QD{|)}E .  

 
Table 2. Results of test of global ice load time series on the distribution law. 

Ice 
thickness 55 mm 72 mm 

Trolley 
speed, m/s 0.025  0.3  0.025  0.1 0.15 0.3  

Indenter’s 
diameter 30 mm  40 mm 30 mm 30 mm 40 mm 96 mm 96 mm 30 mm 

Type of 
test 

LNormal LNormal Normal LNormal LNormal Normal Normal Normal 

𝑧 0.18 0.05 -0.01 0.93 0.06 0.17 -0.28 0.22 

𝜎 5  0.72 1.01 1.01 0.52 1.24 0.99 0.91 0.91 

min 𝑧  -1.23 -2.15 -1.54 0.16 -2.63 -1.36 -2.39 -0.73 

max 𝑧  1.61 1.78 1.41 1.86 1.92 2.42 0.82 1.82 

𝜒{QD{|)}E  2.1 0.94 0.85 20.39 0.99 0.98 2.57 1.83 

𝑁 20 20 10 20 20 10 10 10 

𝑘 20 20 7 20 20 13 13 7 

Result Yes Yes Yes No Yes  Yes Yes Yes 

 

From the Table 2 one can see that records of load made for cylinders with diameters of 30 
and 40 mm against ice with thickness of 55 mm with indentation speed 0.025 m/s can be 
considered as of lognormal origin. For the ice thickness of 72 mm, indenter diameter of 30 
mm and the same speed, the result of the test on lognormal distribution was negative. For ice 
thickness of 72 mm, indenter diameter of 40 mm and speed 0.025 m/s the result was positive.  

All of 20 samples 𝑥  for each of time series 𝑋 were united to make the sample 𝑥 . This 
way data in 𝑥  can also thought as almost uncorrelated. Histograms of the 𝑥  along 
with fitted lognormal curves are provided in the Figure 3 a-d. Parameters of process 𝑿 𝑡  
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estimated from samples 𝑥  in those cases when lognormal distribution was confirmed, 
are provided in corresponding columns of the Table 3. 

Table 3. Estimations of ice load process’ moments obtained from samples 𝑥 . 

Ice thickness 55 mm 72 mm 

Trolley speed, m/s 0.025  0.3  0.025 0.1 0.15 0.3  

Indenter’s diameter 30 mm  40 mm 30 mm 40 mm 96 mm 96 mm 30 mm 

Mean 33.21 42.33 58.8 75.7 267 303.4 145.9 

Std. deviation 
(unbiased) 12.04 14.59 24.6 33.1 91.3 113.2 83.2 

Number of data 
points in 𝑦  400 400 70 400 130 130 70 

a)

 

b) 

 
c) 

 

d) 

 
Figure 3. Histograms of uncorrelated data representing time series of global ice loads on 

cylindrical indenters with diameter: a) 30 mm against ice with thickness of 55 mm; b) 40 mm 
against ice with thickness of 55 mm; c) 30 mm against ice with thickness of 72 mm; d) 40 

mm against ice with thickness of 72 mm. Indentation speed is 0.025 m/s. 

Concluding this section we can say, that lognormal distribution of the global load signal has 
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appeared not only in experiments with indenters of 20 mm in diameter, as was found earlier 
(Dobrodeev et. al., 2016) but also in experiments with indenters of 30 and 40 mm in diameter 
at moderate speed. 
 
NORMAL DISTRIBUTION OF LOAD AT HIGH INDENTATION SPEED  

At high indentation speed the load signal behaves in the other way, than at moderate speed. 
Case of moderate speed was considered in the previous Section, for 30-40 mm wide indenters 
lognormal distribution was confirmed.  
In opposite, at indentation speed of 0.3 m/s for 30 mm wide indenter normal distribution was 
discovered for both of ice field thicknesses: 55 and 72 mm. With that speed only 3 seconds of 
load record were available, thus 𝑛 = 300 data points with = 100 1 𝑠, but it was quite 
enough. The plot of autocorrelation function estimation (5) is presented in Figure 2b. From 
Figure 2b it is clear, that we can take every 4th data point from load time series 𝑋 to 
compose the sample 𝑥  with low correlation of data points in it. Because of small 𝑛 the 
following meaning was taken for 𝑁: 𝑁 = 10. 

This way with 𝑙 = 4 and 𝑁 = 10, we have for 𝑧  the size 𝑘 = 7, which is rather small 
for conducting Chi squared test. Nevertheless, values of 𝜒{QD{|)}E  were found for 3 intervals, 
and they are provided in the Table 2 along with other parameters for 𝑧 . Here parameters of 
population 𝜉 are defined as 0; 1 , so the number of dimensions of freedom of Chi squared 
test statistic under the null hypothesis is 2. From parameters provided in Table 2 it is clear 
that hypothesis on normal distribution of the process 𝑿 𝑡  can be accepted. 

All of 7 samples 𝑥  for each time series 𝑋 were united to make the sample 𝑥 . The 
histograms of 𝑥  along with fitted Normal PDF curves are presented in Figure 4a and 4b. 
Characteristics of 𝑥 , which can be considered as estimations of process 𝑿 𝑡  parameters 
are given in the Table 3.  

  
Figure 4. Histograms of uncorrelated data representing time series of global ice loads on 

cylindrical indenter with diameter of 30 mm at speed 0.3 m/s against ice with thickness a) 55 
mm; b) 72 mm. 

  



POAC17-079 

 

NORMAL DISTRIBUTION OF LOAD ON INDENTER WITH 96 mm DIAMETER  

Another case when normal distribution of the signal was revealed was experiment with 
relatively wide indenter – cylinder of 96 mm in diameter. Normal distribution appeared in 
tests with it against 72 mm thick ice at speeds of 0.1 and 0.15 m/s. Records with duration of 
16.5 and 9.5 seconds were obtained in these two experiments. Autocorrelation function 
estimations (4) for these cases are provided in Figure 5. From this Figure it follows that lags 
𝑙 =12 and 𝑙 =7 respectively seem to be appropriate. For 𝑁= 10 this provides 𝑘 = 13 for 
both of cases.  

Parameters of sample 𝑧  for both of cases are provided in the Table 2 along with values of 
𝜒{QD{|)}E  found for 3 intervals. Here the number of dimensions of freedom of Chi squared 
test statistic under the null hypothesis is 2. From parameters provided in Table 2 it is clear 
that hypothesis on normal distribution of the process 𝑿 𝑡  can be accepted in both of cases. 

Histograms of sample 𝑥  are provided in the Figure 6a and 6b. Parameters of 𝑥  are 
presented in the Table 3. 
Results provided in this Section are in agreement with the normal distribution obtained earlier 
(Zvyagin and Sazonov, 2015) for process of ice load on cylinder with diameter of 100 mm 
against 30 mm thick ice measured at speed of 0.084 m/s.   

 
Figure 5. Estimation (5) of autocorrelation of global ice load on cylindrical indenter with 

diameter of 96 mm against model ice with thickness of 72 mm at speeds 0.1 m/s (blue curve) 
and 0.15 m/s (red curve). 
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a)

 

b)

 
Figure 6. Histograms of uncorrelated data representing time series of ice loads on 96 mm 

wide indenter against 72 mm model ice at speeds a) 0.1 m/s and b) 0.15 m/s. 

DISCUSSION 

Dependency of ice load distribution law on indenter’s diameter in the case of cylindrical 
indenters was expected due to previous studies conducted by the authors. But transition of 
distribution law from lognormal to normal with increasing speed was not revealed before. 
This phenomenon needs further study. Available length of signals registered at 0.3 m/s was 
rather short, but due to low autocorrelation of data points in those signals the amount of data 
was enough to make confident outcomes on the distribution law.  

Stationarity, normality (or lognormality) of the distribution law, knowing of autocorrelation 
function, mean and variance, – these are sufficient conditions for performing successful 
simulations. As far as authors are aware, there is no software exist by now for simulation of 
ice loads time series with using of stochastic processes background. For this study authors 
have used self-written software for data processing and automation of testing procedure. 
Results in Table 2 were obtained with help of that software. 

CONCLUSIONS  

Findings of the conducted study are the following: 

- The lognormal distribution law was revealed for some of global load signals measured in 
experiments with cylindrical indenters of 30 and 40 mm diameter at moderate indentation 
speed of 0.025 m/s and for both studied types of ice thickness – 55 mm and 72 mm. Earlier 
this distribution law was found for 20 mm wide indenters against ice 15-19 mm at 0.01 m/s. 
- Autocorrelation functions of stationary load on cylinders with diameters of 30 and 40 
mm at speed 0.025 m/s appeared to be similar for both studied types of ice thickness. 
- Distribution law of the load signal is speed dependent. At high speed of 0.3 m/s normal 
distribution law has appeared. 
- Distribution law of the load signal probably also depends on the indenter’s diameter. For 
indenter of 96 mm in diameter the normal distribution law was observed both at indentation 
speed of 0.1 m/s and of 0.15 m/s. Earlier this distribution law was found for 100 mm wide 
cylinder against ice 30 mm at indentation speed of 0.084 m/s. However, more detailed 
investigation is needed on this issue. 
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The study opens several issues for future investigation. It is important to determine more 
precisely the indentation speed range and indenter’s diameter range at which lognormal or 
normal distribution is most likely observed. It is important to reveal, how ice thickness 
influence the distribution law and the stationarity of the load signal. Also further study on the 
autocorrelation and/or spectral characteristics of the global load signal is desired. 
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