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ABSTRACT  

Structures with a downward sloping waterline shape in Arctic or sub-Arctic regions 

experience reduced loading from ice on the structure and its foundation compared to vertical 

structures as the slope causes the ice to fail in bending. For the design of these structures, a 

numerical model is desired that can predict the loading from the ice on the structure by 

simulating the physical processes that occur when the ice fails.  

A numerical 2D lattice model has been developed to simulate level ice behavior. The model 

is composed of masses and interconnecting springs, taking into account deformation in 

tension, compression, bending, shear and torsion in the ice sheet. Deformation and failure 

criteria in the model are based on first principles, enabling a physically sound simulation of 

breaking processes. In addition, the discrete lattice model avoids stress singularities in 

fracture modeling since the model only describes displacements and forces in the connections 

and no stresses are present.  

In this paper interaction between ice and a downward sloping conical structure is simulated 

with the lattice model and compared with data from scale model tests. From the model test 

results it was observed that level ice and larger ice floes fail in sequential bending during 

interaction with a structure, giving a repetitive load pattern. Smaller ice floes split and break 

in bending into smaller parts and a sequential breaking pattern does not develop. The lattice 

model is capable of simulating failure in bending, splitting and combinations of these. In 

contrast, predictions of the model presented herein suffer from limitations of the contact 

model between the ice and the structure, the lack of a clearing mechanism and the use of a 

regular lattice mesh. 
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INTRODUCTION  

To build structures in Arctic and sub-Arctic regions, assessment and minimization of loading 

from ice on structures is required. Structures with a downward sloping waterline shape 

experience reduced loading from ice on the structure and its foundation compared to vertical 

structures as the slope causes the ice to fail in bending. The manner in which the ice floes fail 

when encountering the structure depends on the size and material parameters of the floes; 

most observed failure modes are in bending, splitting or a combination of these. By means of 

numerical assessment, a multitude of structures and loading conditions can be analyzed and 

structural shapes can be optimized for ice load reduction. Ice management processes can be 

optimized as well in case the effects of managed floe sizes on the loading of a structure are 

known. A numerical model is used in this paper that can predict the loading from the ice on 

the structure by simulating the physical failure processes and effects of floe parameters.    

Several research institutes and companies have developed numerical assessment tools to 

study ice-sloping-structure interaction, in the form of 1D, 2D or 3D models. Aksnes (2010) 

and Wille, Kuiper, & Metrikine (2011) simulated bending failure of ice in interaction with a 

downward sloping conical structure using a beam model. Beam models are limited in the 

prediction of loading frequencies and breaking length of the ice in case of circular or ship-

shaped structures as 2D effects have significant influence on the breaking pattern for these 

structures. To simulate real-time ice-structure interaction Lubbad and Løaset (2011) adopted a 

model of wedge-shaped beams failing adjacently based on theory of a semi-infinite plate 

resting on an elastic foundation, for which a solution was presented by Nevel (1992). Ice 

failure was modeled in a similar manner to simulate a floating drillship in level ice with 

SIBIS software by Metrikin et al. (2015). The discrete element tool described by Lau et al. 

(2008) has a module that allows for pre-defined crack patterns in simulations for ships in 

level ice. Bonnemaire et al. (2014) used a semi-empirical model to simulate the response of a 

moored floating structure in ice. The discrete element method was used to analyze the 

breaking process of sea ice by Ji et al. (2015) by connecting particles with parallel-bonds with 

associated moment and force and breaking the bonds when internal stresses exceeded a 

certain threshold.   

In this paper a numerical lattice model developed by the authors is employed to simulate 

interaction between ice and a conically shaped structure. The lattice model is composed of 

masses and springs of various types, taking into account deformation in tension, compression, 

bending, shear and torsion in the ice sheet.  Lattice models have been used in the past to 

simulate ice-structure interaction. Sayed (1997) used a lattice model for fracture of sea-ice, 

using elastic and visco-elastic bonds in normal direction between the masses in the model. 

Dorival, Metrikine, & Simone (2008) developed a lattice model to simulate ice crushing 

against a structure. Van den Berg (2016) presented a 3-dimensional lattice model to simulate 

ice-structure interaction. The 2-dimensional model of an ice plate that is used in this paper 

applies deformation and failure criteria that are based on first principles, enabling physically 

sound simulation of failure processes that occur in ice-structure interaction. Another 

advantage of the lattice model is that stress singularities in fracture modeling are avoided as 

the model only describes displacements and forces in the connections instead of strains and 

stresses inherently present in any continuum model.  

The lattice model is validated in this paper against model test results for a rigid downward 

breaking conical structure interacting with ice floes of various sizes. These tests were 

performed as part of a Joint Industry Project and described by Bruun et al. (2011).  Focus in 

this validation study is on combined bending and splitting behavior of the ice, which depends 
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on the floe size. It is shown that the physical failure processes of combined bending and 

splitting can be simulated with the lattice model.  

Although fracture in bending and splitting can be predicted with the lattice model, there are 

limitations to the fracture patterns that can be simulated as the square mesh that is applied in 

the current study causes the fractures in the ice plate to follow mesh-related patterns. This is 

partly resolved by application of local variations to spring stiffness and nodal locations in the 

model. Further improvement could be achieved in the future by further study of local 

variations, improvement of the contact model, adding ice clearance and local mesh 

refinement. 

The paper is structured as follows. In the next section the numerical lattice model is described. 

The third section presents results of experimental measurements that are used for validation 

of the model predictions. This is followed by a comparison is made between experimental 

results and simulations in section 4. In the last section conclusions are listed.  

 

 

 

DESCRIPTION OF THE LATTICE MODEL  

A lattice model has been developed to simulate ice-structure interaction. This 2-dimensional 

model is composed of masses and springs, taking into account deformation in tension, 

compression, bending, shear and torsion in the ice sheet. The lattice, which has a square mesh, 

and its connections are depicted in Figure 1. The model can be applied in both time- and 

frequency-domain simulations. Due to strongly non-linear fracture modeling, in this paper 

simulations are carried out in the time domain.  

In axial directions, parallel with the x- and y- axes, the lattice model has more types of 

connectors than in diagonal directions. The connectors in axial and diagonal directions have 

different stiffness and their stiffness is assigned such that the global bending deformations of 

the plate match the Mindlin-Reissner equations in out-of-plane and those of the classical 

elastic continuum in in-plane direction in the long-wave approximation. The method used to 

derive and verify stiffness of the springs in the lattice model for in-plane-deformation are 

described in Suiker et al. (2001). Linear viscous elements are added to all connectors, to 

represent material damping.  

The Mindlin-Reissner equations, to which the out-of-plane deformations of the lattice model 

are matched in the long-wave limit, describe the dynamic out-of-plane behavior of shear-

deformable plates. The lattice model deformations are based on first principles and not 

limited in width-to-thickness ratio of the ice plate deformations that are simulated with it.  
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Figure 1. The lattice model and its connections working in-and out-of-plane direction. For 

section A-A’ from left to right out-of-plane-bending, out-of-plane-shear, torsion, axial 

deformation and in-plane shear. For section B-B’ from left to right torsion and axial 

deformation. 

 

A Kelvin foundation is applied to the model as a simplistic manner to account for stiffness 

and damping associated with the fluid the ice plate is assumed to float on. Friction working 
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parallel to the ice sheet is included by applying form friction and skin friction drag loads that 

are related to the squared velocity of the ice plate. 

An algorithm for connection failure is included in the lattice model to study fracture. The 

criterion for failure of the connections is based on relative displacement and rotation of the 

springs. When the combined bending and tensile deformation in a connection reaches a 

critical value, the stiffness of all springs forming that connection are set to zero. Critical 

deformation is linked to the flexural strength of the ice via linear stress-strain relation 

accounting for the varying distance between the masses for different lattice cell sizes.     

The advantage of the lattice model is that stress singularities in fracture modeling are avoided 

as the model only describes displacements and forces. Other benefits are that the shape of the 

model can easily be varied by cutting-out the required shape and size along the mesh. Natural 

variations of a material, which are of significant relevance in ice-mechanics, can be easily 

implemented by varying the spring stiffnesses in the different connections or displacing the 

nodes in the mesh of the lattice model.   

To simulate contact load between the lattice and a conical structure, a simplified contact 

algorithm is applied. At each time step of the simulation the amount of overlap between the 

ice and the structure is determined, based on the structural shape, its indentation and the 

deflection and tip rotation of the ice. From this overlap the contact area, acrush in Figure 2, is 

determined. Please note that Figure 2 is a side view of the overlap and that contact forces are 

calculated in three dimensions. The force from the structure on the ice, which is a linear 

function of the contact area and the crushing strength of the ice, and works perpendicular to 

the structure, is calculated and applied to the ice. A friction force is applied in opposite 

direction to the motion of the ice along the structure and is related to the contact force via a 

friction coefficient. 

  

 

Figure 2. Side view indicating important parameters in determining the contact load: Rind is 

the radius of the cone, α is the slope of the cone, L* is the distance between the center of the 

ice edge and the cone, w is the deflection of the ice, ϕ is the tip rotation of the ice, h is ice 

thickness, acrush is the contact length between the ice and the structure, Fcrush is the crushing 

load, perpendicular to the structure and Ffriction is the friction load, directed opposite to the 

motion of the ice along the structure. 
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OBSERVATIONS FROM MODEL TESTING 

Three tests that were executed as part of the JIP model testing campaign, of which an 

overview is presented by Bruun et al. (2011), are studied in this paper. All of the tests were 

executed using the same fixed structure, depicted in Figure 3, which was moved through ice 

with a thickness of 3m at a velocity of 0.1 m/s. All reported values in this paper are in full 

scale. 

 

Figure 3. Dimensions of the structure that was used during the ice basin tests. The waterline 

diameter was 30m. (HSVA 2010a) 

 

 

 
a. 

 
b. 

Figure 4. Overview of the floe distribution in the ice basin a) large floes and b) smaller floes 

(HSVA 2010a) 
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In the three tests the structure encountered ice plates of various sizes: one test was executed 

in level ice, one test in large ice floes and one test in smaller ice floes. Figure 4 presents an 

overview of the ice floe distribution for the two tests in broken ice.  

Figure 5 shows the structure during the test in level ice. Only bending failure can be observed 

when looking at images from the tests, but the failure pattern is not very clear. For tests in 

broken ice, the failure patterns are clearer as the ice floes drift apart and reveal fractures. 

Figure 6, Figure 7 and Figure 8 show images from test video’s for interaction between the 

structure and finite size ice floes. Events were selected where the structure encounters the ice 

floe edge in near the centre. Failure occurs as a combination of bending and splitting.  

 

 

Figure 5. Structure in level ice during model test (HSVA 2010b) 

 

During interaction with a large ice floe of 165x165m, first a piece of ice fails in bending, 

showing a circumferential breaking pattern. Shortly after the structure encounters the new 

broken edge of the ice, the ice plate splits in two. Then the ice fails close to the structure in 

combined radial and circumferential fracture as can be seen on the right hand side of Figure 6. 

During the remaining encounters between the structure and the ice floe, splitting and 

circumferential and radial fracture alternate.  

During interaction with smaller ice floes of 69x34m and 55x55m in both cases first a piece of 

ice breaks off circumferentially. The rectangular floe immediately splits apart during this first 

interaction. The square floe splits apart at the second encounter. The remaining ice pieces 

experience confinement from the surrounding pieces of ice, loading the structure during the 

clearing process. Since all ice floes in the basin are of different size and the structure 

approaches each ice floe at a different angle, breaking patterns of each ice floe are different. 

In case an ice floe is encountered at the edge, typically the edge breaks off before the ice floe 

splits during further encounter with the structure. 
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Figure 6. Image from model test video. Encounter between the structure and a large ice floe 

of 165x165m (HSVA 2010b) 

  

Figure 7. Image from model test video. Encounter between the structure and a small 

rectangular ice floe of 69x34m (HSVA 2010b) 

  

Figure 8. Image from model test video. Encounter between the structure and a small square 

ice floe of 55x55m (HSVA 2010b) 
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The measured force on the structure as function of time is presented in Figure 9 for vertical 

Z-direction and in Figure 10 for horizontal X-direction, in-line with the motion of the 

structure. For the tests in level ice (blue curve) there is a clear sequential pattern of ice 

loading building up until the ice fails and reducing again as the ice clears around the structure, 

both for loading in Z-direction and for loading in X-direction. The difference in height 

between the peaks indicates natural variations in the failure process. For the large ice floes, 

these sequential peaks are also observed, but not continuously during the tests. The peaks 

coincide with events of bending failure and associated clearance during encounters with 

larger ice floes. Circumferential breaking lengths were approximately 6-10m. Despite the 

splitting fracture of the ice floe, similar load levels and failure periods as in level ice are 

achieved, both in X-and Z-direction. It should be noted here that the three tests were executed 

at different timing, such that the ice properties in the basin were not exactly the same. For the 

smaller ice floes the sequential failure patterns are not observed. The smaller ice floes break 

apart almost immediately after encounter with the structure, such that sequential bending 

failure will not occur. The higher horizontal loading peaks in the plots for the structure in 

broken ice, are associated with pushing broken pieces of ice against other ice pieces in the 

basin. The horizontal loading peaks can reach similar levels for all floe sizes. Periodic failure 

is less likely to occur as the floe sizes get smaller.  

 

Figure 9. Loading in Z-direction, measured during the model testing campaign for a sloping 

structure interacting with level ice and ice floes of different sizes 
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Figure 10. Loading in X-direction, measured during the model testing campaign for a sloping 

structure interacting with level ice and ice floes of different sizes 

 

The load levels in Figure 9 and Figure 10 are achieved after running through the ice for a 

longer period of time. At initial encounter with the ice, the load levels are lower, as shown in 

Figure 11 for level ice. This is due to: 1) at first encounter the structure hits the free ice edge 

whereas at steady-state, the structure is surrounded by ice, except for its wake and 2) the ice 

rubble that accumulates underneath the ice near the structure increasing the load that is 

required to push the ice downward and break in bending, as shown in Figure 12.  

 

Figure 11. Loading in Z-direction, measured during the model testing campaign for a sloping 

structure interacting with level ice during the first stage of the test 

 



POAC17-057 

 

Figure 12. Ice rubble accumulates near the structure, beneath the ice, still from model test 

video (HSVA 2010a) 

 

 

COMPARISON OF LATTICE MODEL AND MODEL TEST RESULTS 

Interaction between the conical structure and level ice and ice floes of 165x165m, 55x55m 

and 34x69m is simulated with the lattice model, focusing on the moment of first encountering 

the ice. The input parameters that are used are the same as in the model tests and presented in 

Table 1. It is assumed that the structure hits the ice floes at the mid positon of the edge. 

Confinement is applied at the back of the ice floes, representing confinement from the other 

ice floes in the basin. A square mesh was selected for the lattice model in this study to keep 

the model as simple as possible. 

 

Table 1. Input parameters for ice-structure interaction simulations with the lattice model, 

based on model test input parameters. 

Parameter Quantity 

Ice thickness  3 m 

Flexural strength  750 kPa 

Young’s modulus 8.7 GPa 

Ice density  846 kg/m3 

Waterline diameter of the cone 30 m 

Velocity of the cone 0.1 m/s 
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The resulting fracture patterns of the simulations with the lattice model are presented in 

Figure 13 with light blue lines. In interaction with the level ice (Figure 13a) bending fracture 

only occurs near the structure. This is in line with observations from the model tests. A split 

runs into the ice sheet in the numerical simulations, which was not seen in the modeltests. It 

could be that the split in the numerical simulations is caused by effects from the boundary or 

simplifications in the contact model. For the finite size ice floes (Figure 13 b-d) the fracture 

patterns consist of splitting of the ice floe and bending fracture near the structure, this is in 

line with observations from the model tests. For the 165x165m ice floe, first a small piece 

breaks off during the model tests, before the floe splits during the second encounter. In the 

numerical simulations a split occurs, which does not reach the end of the ice-sheet at the first 

encounter, but is likely to reach the end of the sheet at the second encounter between the ice 

edge and the structure. In interaction with the 34x69m ice floe, the ice floe splits apart and 

two triangular-shaped pieces of ice break off. In the numerical simulation a similar failure 

pattern is observed. The numerical pattern is slightly mesh-dependent as can be seen by the 

straight fracture lines along the mesh near the structure. This could be avoided by applying 

randomness in nodal locations or local strength or stiffness properties in the mesh. For the 

55x55m ice floe the ice fails near the structure and splits apart. In the model tests the 

structure hits the ice floe to the side and under an angle with the x-axis, which causes a piece 

of ice to break off first, before the ice splits.  

The maximum load the structure imposes on the ice for the case with level ice and the 

165x165m ice floe is 3.6MN. This is of the same order of magnitude, but lower than the 

loading of 5MN that was observed during the model testing for the first encounter with the 

ice, where no rubble was present ahead of the structure and the structure encountered the ice 

at the edge. Uncertainties and local variations in ice strength and contact simulation may be a 

source of these differences. A lower load of 1.6MN for the 34x69m ice floe and 1.3MN for 

the 55x55m ice floe are simulated. This is in line with the model tests, where lower loads 

were found for encounter with smaller ice floes. The build-up time of the load in the 

simulations is similar to the build-up time in the model tests; a few seconds. The ice 

clearance phase around the structure is not simulated. 

The breaking radius of circumferential fracture in the level ice and 165x165m ice floe is 

approximately 11m in the simulations with the lattice model. This is a bit higher than the 6-

10m that was observed in model testing. Including local imperfections (lower strength of 

connections or weaker connections) could make the breaking length estimate more accurate. 

Mesh refinement near the structure may also lead to more accurate failure length calculation. 

The triangular piece that breaks of in the 34x69m ice floe is a bit wider in the model tests 

than in the numerical simulation. The ice rubble that was present under the ice in the model 

test, but was not simulated numerically, could play a role in discrepancies between numerical 

results and model tests. 
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a. 

 
b. 

 
c. 

 
d. 

Figure 13. Fracture patterns of interaction between the lattice model and the structure. a) level 

ice b) 165x165m ice floe c) 34x69m ice floe d) 55x55m ice floe 

 

To simulate natural variations in the ice, the stiffness of each spring in the mesh was changed 

by adding random fluctuation using a normal distribution with zero mean and unit variance, 

multiplied with 1/10th of the original stiffness. The nodes of the lattice were displaced by 

adding random fluctuation using a normal distribution with zero mean and unit variance, 

multiplied with 1/16th of the distance between the nodes. Results are presented in Figure 14 

for the 69x34m ice floe. The fracture pattern is now influenced by the irregular mesh and 

initially a piece of ice breaks off towards one side. The failure load in the numerical 

simulation is 1.7MN. The randomness in the model could be further optimized to improve 

accuracy of failure predictions with the lattice model.  
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Figure 14. Fracture patterns of interaction between the lattice model for a 34x69m ice floe 

and the structure with randomized stiffness of the connections.  

 

 
 

 

 
a. b. 

 

 

c. d. 

Figure 15. Fracture patterns of interaction between the lattice model and the structure for 

165x165m ice floe. Sensitivity checks for a) Young’s Modulus 2GPa b) Ice thickness 2m c) 

Crushing strength 0.1MPa d) Randomized mesh 
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Four sensitivity checks are done for the 165x165m ice floe. The fracture patterns are 

presented in Figure 15. First the Young’s Modulus is reduced to 2GPa, which reduces the 

length of the split. The maximum load on the structure remains 3.6 MN. Next, the ice 

thickness is reduced to 2m and again reduction the length of the split is observed, and the 

maximum load reduces to 1.5MN. Then the crushing strength of the ice is reduced from 

2MPa to 0.2MPa causing the ice plate to split over its full length. The failure load slightly 

increases to 3.9 MN and the failure process takes longer. Finally, the effect of randomization 

of the ice is tested for the large ice floe, resulting in a different fracture pattern; the split does 

not follow the mesh in a straight line. The failure load for this realization is 2.1MN.   

The lattice model is capable of simulating failure in bending, splitting and combinations of 

these. The deformation and fracture algorithm are based on first principles, enabling correct 

simulation of physical processes without any calibration to the model. Currently sequential 

failure cannot be simulated with the model as a clearing mechanism of the ice blocks after 

failure has not been developed. Remaining differences in failure pattern and ice load between 

model test results and lattice model simulations could be reduced by making further 

improvements such as local mesh refinement, optimized mesh randomization and an 

improved contact model. The numerical lattice model could be linked to existing numerical 

models, for example discrete element method, to make optimum use of existing codes and 

developments.  

 

CONCLUSIONS  

A numerical lattice model has been used to simulate level ice behavior and its capabilities of 

predicting fracture patterns and loads have been compared to results from model testing. 

Deformation and failure criteria in the 2-dimensional lattice model are based on first 

principles, enabling sound simulation of physical processes. In addition, the discrete lattice 

model avoids stress singularities in fracture modeling since the model only describes 

displacements and forces in the connections and no stresses are present. By means of 

numerical assessment, a multitude of structures and loading conditions can be analyzed and 

structural shapes can be optimized for interaction with ice. Ice management processes can be 

optimized in case the effects of managed floe sizes on the loading of a structure are known.   

In model tests with a conical structure in 3m thick level ice and ice floes of different sizes it 

was found that for level ice and larger ice floes the floes fail in bending near the structure, 

whereas the smaller ice floes split apart in interaction with the structure. Sequential loading 

peaks are observed in interaction with level ice and larger floe sizes, but not for smaller floe 

sizes. Load on the structure in vertical direction is smaller in interaction with smaller floes. 

Horizontal loading, however, can reach similar levels for all floe sizes, in case of high 

confinement, as pieces of ice are pushed against other ice pieces forming load bridges. 

Interaction between ice and a downward sloping conical structure is simulated with the lattice 

model and compared with observations from the model tests, focusing on the first encounter 

with the ice floe. The lattice model is able to predict whether an ice floe splits or whether 

failure occurs near the structure in bending. Slightly lower load levels are found in 

simulations with the lattice model. A sensitivity study is done to analyse the influence of 

heterogeneities by varying the stiffness of the connections in the lattice model and nodal 

locations, which could make the lattice model less mesh sensitive. The fracture pattern 

becomes less senstitive to the mesh, but further improvements to the randomization process 
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are required. Other additions such as ice clearance mechanisms, local mesh refinement, 

optimized randomization and an improved contact model would enable more accurate 

fracture pattern predictions and maximize the efficiency of the lattice model. The numerical 

lattice model could be linked to existing numerical models, for example a discrete element 

method, to make optimum use of existing codes and developments. 
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