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ABSTRACT  

A realistic numerical simulation technology using a particle-based fluid-structure interaction 

(FSI) model is combined with a brittle fracture algorithm to predict the fluid-ice-structure 

interaction. With respect to the failure of ice, it is modeled as a brittle fracture of elastic body 

by applying a novel FSI model based on the Moving Particle Semi-implicit (MPS) method. 

For verifying the developed fracture algorithm, a series of numerical simulation for 3-point 

bending tests with ice beam are performed and compared with the experiments carried out in 

the ice room. And then, for the application of the developed FSI model, a dropping water 

droplet interacting with a cantilever ice beam is simulated with and without the fracture 

algorithm. As the results from the simulation, it is seen that the consequent effects of fracture 

that might be occurred in the process of FSI simulation is available to be studied. 

 

KEY WORDS: Brittle fracture, 3-point bending problem, Ice fracture, Fluid-ice-structure 

interaction, MPS (Moving Particle Semi-implicit) method 

 

INTRODUCTION 

In Arctic environment, ice accumulation plays a critical role as extremely high loads acting 

on the moored structures or the structures operating in ice-covered waters. The floating ice 

loads on the Arctic structures affect serious structural damages and safety for not only 

stationary operating offshore platforms but also sailing vessels in icy environments. 

Especially, when the icebreaker conducting icebreaking operations, the interaction of the 

crushed ice and marine propulsor has become an important factor affecting the performance 

and safety of the ship. Primary consideration for the Arctic transportations will be safety, 

effectiveness and cost. In order to evaluate a new design of ice strengthen vessel, physical 

model testing or numerical simulation should be required. To perform such simulations, the 

simulation technology of fluid-ice-structure interaction has become a necessary prerequisite.  
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Most of the fluid-structure interaction (FSI) simulation was performed by grid system 

(Hübner, et. al., 2004). When fracture is engaged, however, the grid system is interfering and 

the meshes need to be separated or decomposed to represent numerically the crack 

propagation. To solve these problems, therefore, a relatively complex algorithm should be 

required. In this respect, the meshless method is less restrictive from such matters. 

Up to now, there are many researchers studied on the fracture by mesh or meshless method. 

Chan (Chan, 1981) studied the fracture toughness and creep behavior of ice by Finite 

Element Method (FEM). Sakharov (Sakharov et. al., 2015) carried out experiment of fixed 

end beam bending test with lake ice and compared the experimental results with the finite 

element simulation. Abbas (Abbas et. al., 2010) proposed two model-independent approaches 

based on Extended Finite Element Method (XFEM), which the author claim to be 

independent of the fracture model consideration. Sepehri (Sepehri, 2014) studied the 

hydraulic fracture propagation pattern used XFEM. Peixiang (Peixiang et al., 2013) studied 

he dynamic fracture problem in functional graded material based on Element-Free Galerkin 

Method (EFGM). Bui (Bui, 2008) presented a study of large deformation and failure flows of 

geo-material use Smoothed Particle Hydrodynamics (SPH). Tan (Tan et al., 2009) simulate 

the microscopic machining process of ceramics by considering the fracture and damage. 

Beckmann (Beckmann et. al., 2014) studied concrete fracture phenomena. Both of them used 

DEM model to achieve that. In recent, especially, there are also some research activities for 

numerical simulations to handle the ice breakup feature during the ice-structure interaction 

and treat broken ice as discrete-continuum material using the discrete element method (DEM). 

(Shen et al., 1987; Lepparanta et al., 1990; Hopkins, 1998; Hansen and Løset, 1999a, b; 

Selvadurai and Sepehr, 1999; Hopkins and Shen, 2001; Dai et al, 2004; Polojarvi and 

Tuhkuri, 2009; Zhan et al., 2010; Karulin and Karulina, 2011; Lau et al., 2011; Sun and Shen, 

2012; Xu et al., 2012; Ji et al., 2013; Metrikin and Løset, 2013; Morgan, et al., 2015). 

However, most of DEM-based simulations concerned with ice floes have performed under no 

consideration of fully interacting with sea water. 

In the present study, a realistic numerical simulation technology for predicting the fluid-

ice-structure interaction has been newly developed using a particle-based FSI model which is 

combined with a brittle fracture algorithm. With respect to failure of ice, it is modeled as a 

brittle fracture of elastic by applying a novel FSI model based on the Moving Particle Semi-

implicit (MPS) method (Hwang et al., 2014; 2016). To validate the developed fracture 

algorithm, the 3-point bending simulation with ice beam is performed and compared with the 

experiments which was carried out in a cold room. And then, for the application of FSI model, 

the dropping water droplet interacting with a cantilever ice beam is simulated comparatively 

with and without the fracture algorithm. 

 

GOVERNING EQUATIONS 

The momentum conservation equation for both of fluid and structure can be expressed as:  

1Du
f g

Dt



               (1) 

where, , , , , ,t u f g   indicate the density of fluid, time, velocity vector, stress 

tensor, external force and the gravity acceleration, respectively. The stress tensor is defined 
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for fluid and structure analysis differently. For fluid, the stress tensor consists of a gradient of 

pressure and a viscosity term. For structure, the stress tensor is composed of normal stress 

and shear stress.  
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            (3) 

where, , ,F S SP u x     indicate the pressure and viscosity coefficient of fluid, 

the first and second Lamé's parameters, and the components of velocity and displacement.  

Governing Equations of Fluid 

By introducing Eq. (2) into Eq. (1), we obtain the momentum conservation equations of fluid, 

also known as Navier-Stokes equation. And in order to solve the pressure term by the 

relationship between the density and the divergence of the velocity, we also introduced the 

mass conservation equation as governing equation:  

21
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where, , , , , ,
toF S Ft u f g   indicate the density of fluid, time, velocity vector, 

coupling force acting on the fluid boundary, gravity acceleration and the kinematic viscosity, 

respectively.  

Governing Equations of Structure 

By introducing Eq. (3) into Eq. (1), we obtain the momentum conservation equations of 

structure as:  

  
1

2
tos s F S
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Du
tr f g

Dt
   


            (6) 

where, , , ,
tos F Sf g   imply the density of structure, stress tensor, load acting on the 

structure and the gravity acceleration, respectively.  

And the Lame's constants s  and s  can be calculated by Young's modulus E  and 

Poisson ratio s  as: 

    1 1 2 2 1

s
s s

s s s

E E
 

  
 

  
        (7) 

To consider the rotation of structure particles, the angular momentum conservation equation 

was introduced as: 



POAC17-054 

shear

D
I r f

Dt


            (8) 

where, I ,  , r , 
shearf  indicate the moment of inertia, angular velocity, position vector 

and shear force, respectively. 

Fluid-Structure Interaction Algorithm 

A concept diagram of the FSI coupling system which is based on the improved MPS-based 

model (Hwang et al., 2014; 2016) is illustrated in Figure 1. After the fluid analysis is 

completed in a time step, the coupling force to structure analysis is calculated by integrating 

the pressure of fluid on the surface of structure. And then, the structure analysis is performed 

considering the coupling force from the fluid. Consequentially, the updated position of 

structure particles acts a role of new boundary condition and acceleration at the new interface 

is given as the coupling force to fluid analysis in next time step. 

 

Figure 1. Concept diagram of FSI coupling procedure 

In the calculation procedure, the prediction–correction solution algorithm is introduced for 

fluid analysis based on the PNU-MPS method (Lee et al., 2011). Firstly, the intermediate 

velocity is obtained from the viscous, coupling force and gravity terms explicitly as below:  

 * 2

, , to

k F k k

i i F i i S Fu u t u f g            (9) 

where t  is the time step and the superscript k  implies time step number. Also, the 

coupling force , toi S Ff  can be defined by the acceleration of the interface of structure domain 

as: 
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After calculating the intermediate velocity by Eq. (9), the pressure field of fluid at time step 

1k   is obtained implicitly by solving the Pressure Poisson Equation (PPE) as follows: 
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where   is a blending parameter considered as 0.03 (Lee et al., 2011), 0n  is the particle 

number density of initial arrangement and kn  is the particle number density at the k -th time 

step obtained as: 
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In the correction step, finally, the new velocity at the time step 1k   is updated by taking the 

summation of intermediate velocity and pressure gradient term in Eq. (14).  
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In Eq. (14), the Gradient Correction (GC) scheme (Khayyer and Gotoh, 2011) is used for 

calculating the pressure gradient term. 

After completing the fluid analysis, the structure analysis is performed according to Hwang et. 

al.(2014; 2016). as: 
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where  
,

k

i S
x  is the displacement of the particle i  from its initial location and 

ll  the 

strain rate represented as follows: 
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And a coupling force 
to

k

F Sf  in Eq. (16) can be calculated by integrating the pressure on the 

interface as: 
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where 
,i IFx  represents the position vector of the fluid-solid interface corresponding to the 

structure particle i  and is calculated by the following formula (Antoci et. al., 2007). 

0
ˆ0.5

surfi i ir r l n                (19) 

where 0l  is the initial particle length and ˆ
in  the normal vector of structure particle i . 

For more detail description on the FSI algorithm, refer to Hwang et al. (2016; 2016). 

Figure 2 shows the computational procedure of numerical algorithm for FSI simulation  

 

Figure 2. Computational procedure of numerical algorithm for FSI simulation 

 

Brittle Failure 

In the present study, the maximum normal stress criterion is used for a failure criteria of 

brittle fracture (Juvinall & Marshek, 2006), i.e. a brittle material will fail when the maximum 

normal stress, 1 , exceeds the uniaxial tensile strength of the material, f , as:  

1 f                 (27) 
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Since the maximum normal stress that causes the failure may occur in any direction, we 

consider the rotation of stress tensor to obtain the maximum normal stress as follows: 
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From the above equation, the first normal components of stress, 
1n , can be written as: 
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In Eq. (29), the stress tensor is a function of rotation angle and the maximum stress in the 

normal direction should be satisfied to the following equation as: 
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The above equation can be rewritten as:  
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In general, Eq. (31) becomes a quadratic equation as: 

 
2 0

4

B

A B
   


              (32) 

where 2cos  ,  
2
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Finally, the following equation can be obtained as the solution of Eq. (32):  
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             (33) 

If the direction angle   for the maximum normal stress is obtained from Eq. (33), therefore, 

the corresponding maximum normal stress max 1( )   can be determined by substituting 

  into Eq. (29). 

In addition, there is another way to consider the maximum normal stress, so-called as the first 

principal stress. Because the maximum normal stress is indicated over the crack propagation 

direction, all components of shear stress should be zero, which means the first principal stress 

becomes the largest eigenvalue of the stress matrix. Hence, the direction of the maximum 

normal stress is the eigenvector corresponding to the eigenvalue of the stress matrix. 

In the numerical process, when a particle i  is judged that the crack occurs locally, a spring-

like relationship will be disconnected with the neighboring particle j  which is located 
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opposite to the crack plane within the effective radius er . For any pair of two particles i  

and j  in the vicinity of the crack, as long as they meet the following two conditions, the 

mutual influence each other will be eliminated by setting the value of weight function zero: 

i) A pair particle needs to locate on both sides of the crack plane and can expressed as: 

   ˆ ˆ 0i c c j c cr r n r r n         
           (34) 

where,   2c i jr r r   implies the midpoint between two particles i  and j , and 

ˆ
cn  the direction of crack propagation as given in  ˆ cos , sincn   . 

ii) One of two particles needs to be located opposite to the crack as: 
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where, 0wC l  should be determined in a range of 0
0

2
w e

l
C l r   and wC  can be set 

at 2d  to avoid discontinuous crack capturing especially in diagonal direction. 

 

SIMULATION RESULTS 

Simulation of Three-Point Bending Test 

To validate the developed fracture algorithm, a series of numerical simulation of 3-point 

bending test with ice beam made of fresh water is performed and compared with the 

experimental data obtained from the experiment which was independently conducted in a 

cold room at Korea Maritime and Ocean University. 

Figure 4 shows the schematic view of the three-point bending test. The distance between two 

simple support points is 180mm and the thickness of ice specimen is 40mm. A concentrated 

load with a constant speed of 0.0025m/s is applied to the midpoint of the ice beam. 

 

Figure 4. Schematic view of three-point bending test with ice beam 
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Photo 1 shows the typical snapshots of three-point bending test before and after crack of ice 

beam. It is seen clearly that a vertical crack appears just below the point where the load is 

acting when the load is large enough, which directly leads to the breakage of the ice beam.  

  

Photo 1. Experimental photos of three-point bending test with ice beam before (left) and after 

(right) cracking 

From the experiment, the failure load maxP  and deformation on the loading point   were 

measured and the material properties of ice beam, such as Young’s modulus E , flexural 

strength 
f  and flexural strain 

f ,  were calculated as: 

3

max1

4

PL
E

w h 

 
  

 
              (36) 

max

2

3

2
f

P L

wh
                 (37) 

2

6
f

h

h





                (38) 

where, w  and h  are the width and thickness of specimen. 

The summarized experimental results are listed in Table 1. 

 

Table 1. Summary of experiments for three-point bending test with ice beam 

 Raw data Calculation results 

Exp. No.  w m   h m   maxP N   m   E MPa   f MPa  f  

02 0.082 0.038 500.1 6e-4 270.084 1.140 0.0042 

03 0.084 0.044 411.9 4e-4 209.822 0.684 0.0032 

04 0.081 0.040 588.4 9e-4 183.875 1.226 0.0067 

05 0.079 0.039 441.3 1e-3 137.300 0.992 0.0072 

10 0.082 0.037 323.6 1.15e-3 98.775 0.778 0.0079 
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In the simulation, the Young's modulus and flexural strength are used as the input data for 

material properties of ice beam. The Poisson's ratio is assumed to be 0.3. The time step and 

particle length are set at 
610
s and 

32 10 m, respectively. 

The time-sequential snapshots of crack path and distribution of horizontal normal stress are 

shown in Figure 5. Before cracks appeared at t=0.0334s, the tensile stress is observed at 

lower part and compressive stress separated near central position where the concentrated load 

acts at upper part. As the crack evolves at t=0.0335s and 0.0339s, the concentration of 

horizontal stress is evident. Eventually the ice beam is completely broken at t=0.0342s and 

the corresponding stress is relived. 

 

(a) t=0.0334s         (b) t=0.0335s        (c) t=0.0339s        (d) t=0.0342s 

 Figure 5. Snapshots of crack path (upper) and normal stress in x-direction (lower) 

 

Figure 6 shows the time history of horizontal normal stress at two middle points on top and 

bottom surface of the ice beam. The stress curves increase gradually with small elastic 

vibration before fracture as time increasing due to the assumption that the structure is 

considered as elastic material. And then after the fracture, the stresses dramatically decrease 

near zero. 

 

Figure 6. Time history of stress at two mid-points on top and bottom surface of beam 
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Finally, the flexural strains of the present simulation are compared with those of experiment 

in Figure 7. Overall agreements are quite good, but it tends that the deviation with the 

experiment becomes larger if the Young’s modulus of the materials becomes smaller. The 

maximum error between both is below 7.5 percent. 

 

Figure 7. Comparison of flexural strain with experiments 

 

FSI Simulation with Fracture Model 

A dropping water droplet interacting with a cantilever ice beam is carried out for the 

application of FSI model. Figure 10 shows an initial setup for FSI simulation. The length and 

thickness of the ice beam are 0.5m and 0.05 m, respectively. The left end is fixed and the 

square water droplet with 0.1 m is falling down with the initial velocity of 9 m/s above the 

free end of the beam. The material properties of the cantilever ice beam are set the same as 

case 02 of 3-point bending test with the Young's modulus of 270.084 MPa, the Poisson's ratio 

of 0.3 and the flexural strength of 1.140 MPa. The time step for fluid and structure analysis 

are 51 10 s and 71 10 s, respectively, and the particle size is 32.5 10 m. 

 

Figure 10. Schematic view and dimension of FSI simulation 
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Figure 11. Snapshots of FSI simulation without failure (left), with failure (middle) and 

the crack path (right) from t=0.004s to t=0.01s with the step of 0.001s 
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Figure 12. Definition of corresponding positions A and B 

 

 

Figure 13. Snapshots of the failure path (upper) and horizontal normal stress distribution 

(below) at position A from t=0.004s to t=0.01s with interval of 0.001s 

 

 

Figure 14. Snapshots of the failure path (upper) and the horizontal normal stress distribution 

(below) at position B from t=0.004s to t=0.01s with interval of 0.001s 
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Figure 11 illustrates the time-sequential snapshots for FSI simulation from t=0.004s to 0.01s 

with interval of 0.001s. The first and second column are the cases without and with the brittle 

failure algorithm, respectively, and the last column the crack path of ice in the FSI simulation 

with the failure algorithm. It can be shown that the failure occurs from where the local stress 

exceeds the critical value, and the dynamic behavior and stress distribution over the beam are 

completely different from the simulation without the failure algorithm. 

A series of snapshots for local stress distribution and crack propagation around two different 

positions A and B marked in Figure 12 are depicted in Figures 13 and 14. It is observed the 

crack occurs where the stress is concentrated and location of stress concentration moves 

according to the front of crack propagation. At the same time, the corresponding stress 

distribution becomes unstable, which is whereby resulted in the direction of crack 

propagation unpredictably changed. Thus, small differences in conditions would reproduce 

completely different simulation results. It makes to predict accurately these kinds of problems 

difficult. 

 

CONCLUSIONS 

A realistic numerical simulation technology using a particle-based Fluid-Structure Interaction 

(FSI) model combined with a brittle fracture algorithm has been developed to simulate the 

fluid-ice-structure interaction problems. The failure of ice is modeled as a brittle fracture of 

elastic by applying a novel FSI model based on the Moving Particle Semi-implicit (MPS) 

method. The developed numerical algorithm of fracture was validated through the 

comparison with the experiments in a cold room for 3-point bending tests with ice beam. It 

was seen that the brittle failure was successfully simulated and the acceptable range of error 

was obtained within 7.5% compare to the experiments. After then, for the application of FSI 

model associated with the fracture algorithm, the numerical simulation of the dropping water 

droplet interacting with a cantilever ice beam was carried out comparatively with and without 

the fracture algorithm. From the simulation, it can be said that the consequent effects of 

fracture that might be occurred in the process of FSI simulation are available to be studied. 
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