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ABSTRACT 
Exploration and production of oil and gas resources in harsh offshore environments may 
require operating in contact with ice. Therefore, there is a need to understand the operational 
implications of ice actions on stationkeeping of floating platforms, offloading of 
hydrocarbons, evacuation and rescue of personnel and oil spill response operations. This 
knowledge is especially important in the early phase of field developments projects, because 
ice actions can strongly affect the costs of the hull structure of a floating platform, as well as 
the design of its mooring and propulsion systems. Furthermore, estimating the operational 
expenditures of potential support operations requires the knowledge of ice loads on vessels in 
transit during physical ice management and other special operations such as iceberg towing 
through broken ice. This paper presents a novel numerical environment for simulating such 
complex and critical offshore operations with high fidelity and performance: SIBIS, which 
stands for “Simulation of Interaction between Broken Ice and Structures”. The numerical 
model estimates both local and global ice actions on vessels and offshore structures, and the 
corresponding structural response in time domain. This paper describes the overall structure 
and capabilities of the SIBIS package, and presents some examples of its successful usage in 
industrial projects. 
 
 
INTRODUCTION 
Oil and gas industry operations in deep-water Arctic areas are currently taking place primarily 
during the open water season. For example, floating drilling and production platforms are 
routinely operating in the Barents Sea and offshore Newfoundland and Labrador. However, 
certain offshore sites may experience rare sea ice intrusions, and in such situations the 
performance of a drilling or production facility shall remain safe and robust. It is known that 
in all practical sea ice intrusion situations the ice cover approaching the operational site of a 
floating platform will be discontinuous, i.e. broken into discrete ice features of various shapes 
and sizes either by waves or by the operator’s ice management fleet. 
 
The capability of a platform or a vessel to operate in a broken ice field depends on the level of 
ice actions. These actions, in turn, depend on the ice-structure interaction processes which 
involve complex contact mechanics: ice material failure, rigid-body motions of the broken ice 
pieces, ice-ice and ice-structure friction, ice clearing processes and fluid effects. Moreover, 
the boundary conditions of the broken ice domain may have a strong influence on the load-
response relationship of the dynamical ice-structure system, leading to a range of highly 
nonlinear and complex physical behaviours. Such interactions are very challenging to 
describe and predict, and the industry lacks reliable engineering tools for computing the 
response of structures to actions from broken ice. 
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Modelling and simulation of the global loads on structures from broken ice is especially 
challenging because of the apparent discrete-continuum nature of the broken ice material. On 
the one hand, it is composed of distinct ice floes that can be described as separate independent 
bodies, i.e., a discrete system. On the other hand, during ice drift and ice-vessel interactions 
the ice floes can crush, split, buckle and fracture, producing new floes and brash ice. Such 
material behaviour can be difficult to describe from a purely discrete perspective, and 
calculations of stresses and strains inside the individual ice floes may be necessary. 
Nevertheless, several empirical and numerical methods have been developed for estimating 
global loads on offshore structures from broken ice. 
 
State-of-the-art empirical methods can be listed as follows: 

• Methods based on regression analyses of model tests performed in pack ice conditions 
(Spencer and Molyneux, 2009; Woolgar and Colbourne, 2010; Wang et al., 2010); 

• The “equivalent level ice thickness” method of Keinonen et al. (1998); 
• Formulae derived from full-scale measurements of the global ice loads on the Kulluk 

platform (Wright, 1999; Croasdale et al., 2009; Palmer and Croasdale, 2013). 
 
However, those empirical formulations produce only one estimate of the ice load for a certain 
combination of ice-vessel parameters. For practical applications that can be insufficient, 
especially when reliable information about the dynamical and statistical characteristics of the 
ice load signal are needed for an engineering application (such as the mean and peak values). 
Although this limitation can be circumvented by either a statistical method (Metrikin et al., 
2013) or a “max-to-mean ratio” method (Eik and Aksnes, 2010; Eik, 2011), such methods do 
not seem to be widely applied in the industry. Another promising empirical approach is based 
on direct usage of experimental data of the measured global ice loads, which are used as input 
to a numerical model of an offshore structure. Although this method has been widely used in 
dynamic positioning (DP) applications (Jenssen et al., 2009; Hals and Jenssen, 2012; Metrikin 
et al., 2013), the most challenging stationkeeping scenarios, such as DP position loss due to 
insufficient thrust, cannot be reliably replicated by this method as demonstrated by Jenssen et 
al. (2012) and Metrikin et al. (2013). 
 
It is generally accepted that a more promising approach is to utilize a high-fidelity numerical 
model, based on the fundamental laws of physics, to estimate the ice loads. Different 
numerical techniques have been historically applied for this purpose: 

• The Finite Element Method (FEM) implemented in a commercial software package 
such as LS-DYNA, ANSYS or ABAQUS (Wang and Derradji-Aouat, 2010; Wang 
and Derradji-Aouat, 2011; Millan and Wang, 2011; Lobanov, 2011; Kim et al., 2013; 
Lee et al., 2013; Kim et al., 2014); 

• Implementation of the Particle-In-Cell (PIC) method introduced by Sayed (1997) and 
further developed at the National Research Council of Canada (Barker et al., 2000, 
2002, 2014; Barker and Sayed, 2012; Iyerusalimskiy et al., 2012; Sayed and Barker, 
2011; Sayed and Kubat, 2011; Sayed et al., 2012a, 2012b, 2014a, 2014b, 2015; 
Vachon et al., 2012); 

• Various implementations and further developments of the classical penalty-based 
discrete element method of Cundall (1971). Modern implementations include: 

o Finite-Discrete Element Method (FEM-DEM) numerical code developed in-
house by the Department of Applied Mechanics at Aalto University in Finland 
(Tuhkuri, 2005; Paavilainen et al., 2006, 2009, 2011; Paavilainen and Tuhkuri, 
2012; 2013; Paavilainen, 2013; Polojärvi and Tuhkuri, 2009, 2010, 2013, 



2014; Polojärvi et al., 2012, 2015; Polojärvi, 2013; Haase et al., 2010; Ranta et 
al., 2014); 

o Model of the Krylov State Research Centre in Saint-Petersburg, Russia 
(Karulin and Karulina, 2010, 2011, 2013, 2014); 

o The  DECICE code owned by the Oceanic Consulting Corporation in Canada 
(O'Brien, 2004; Quinton, 2006; Lau, 2006; Lau and Ré, 2006; Lawrence, 2009; 
Liu et al., 2010; Zhan et al., 2010; Park et al., 2011; Lau et al., 2011; 
Molyneux et al., 2012a, 2012b; Zhan and Molyneux, 2012); 

o And other independent developments (Selvadurai, 2009; Sun and Shen, 2012; 
Vroegrijk, 2012; Ji et al., 2014, 2013). 

• Recently, a new method for calculating broken ice loads on structures was proposed - 
the GPU-based event mechanics (GEM) (Daley et al., 2012, 2014a, 2014b; Alawneh 
et al., 2015). The background theory and governing equations of that method can be 
found in Alawneh (2014), and validation was performed against small-scale 
experiments where the vessel and the ice floes were modelled by polypropylene 
blocks (Alawneh, 2014; Alawneh et al., 2015). 

 
In the authors’ opinion, one of the most promising numerical approaches for simulating ice-
structure interaction is the nonsmooth discrete element method. For ice mechanics 
applications that method was pioneered by Konno and Mizuki (2006a), and was developed 
further in their subsequent publications (Konno and Mizuki, 2006b; Konno et al., 2007, 2011, 
2013; Konno and Yoshimoto, 2008; Konno, 2009a, 2009b; Konno and Saitoh, 2010; 
Watanabe and Konno, 2011; Ishibashi et al., 2014). A similar approach is utilized in the 
numerical model developed by the Ship Modelling and Simulation Centre (SMSC) in 
Trondheim, Norway (Amdahl et al., 2014; Gürtner et al., 2012; Lubbad and Løset, 2011), and 
in the simulator product developed by the Norwegian University of Science and Technology 
(Metrikin et al., 2012a, 2012b, 2013, 2015; Metrikin and Løset, 2013; Kerkeni et al., 2013a, 
2013b; Kerkeni and Metrikin, 2013; Scibilia et al., 2014; Østhus, 2014; Metrikin, 2014; 
Kjerstad and Skjetne, 2014; Kjerstad et al., 2015). Furthermore, the nonsmooth discrete 
element approach is presumably utilized in the new ice simulation tool using a multi-model 
program developed by Cervval, Bureau Veritas and Technip (Septseault et al., 2014, 2015). 
Finally, another numerical model, seemingly based on similar theoretical principles, is 
currently being developed independently by the Norwegian University of Science and 
Technology within the framework of the Sustainable Arctic Marine and Coastal Technology 
(SAMCoT) centre for research-based innovation (Lubbad and Løset, 2015). 
 
This paper presents a novel and independently developed numerical approach for estimating 
the response of vessels and offshore structures to broken ice actions. The approach is based on 
the nonsmooth 3D formulation of the discrete element method, and it is implemented in a 
software package which offers a complete engineering environment for simulating various 
offshore operations in contact with ice. The forthcoming sections of the paper describe the 
structure and capabilities of the new software package, as well as some of its validation cases 
and successful usage examples from real industrial projects. 

SIBIS MODEL DESCRIPTION 
SIBIS (Simulation of Interaction between Broken Ice and Structures) is a novel simulation 
tool which has been developed jointly by Statoil and Multiconsult as a complete numerical 
environment for efficient simulations of offshore structures in discontinuous ice conditions in 
time domain. The main application of the SIBIS numerical model is simulating the response 
of floating structures to global pack ice loads, but the software can also be used for simulating 



ice actions on fixed offshore and coastal structures in intact or deformed (e.g. ridged) ice, as 
well as for a wide spectrum of other ice engineering challenges, such as for example under-
hull ice material transport investigations. On the highest level the SIBIS numerical tool is 
structured as shown in Figure 1. 
 

 
Figure 1. Top-level structure of the SIBIS simulator product. 

 
User’s input to the numerical model includes the 3D surface mesh of the simulated structure, 
its mass and inertia tensor, as well as the stationkeeping system configuration. The structure 
can be moored or thruster-assisted (on DP), as well as fixed to a planar motion mechanism 
(PMM) or to a towing carriage in a virtual ice basin. Other user-defined input parameters to 
SIBIS include the densities of the surrounding water and air, current and wind velocities and 
the acceleration of gravity. The simulated physical domain can be restricted by static 
boundaries, if the objective of the user is to simulate an operation close to a coastline, or a 
model-scale experiment in a restricted ice tank. 
 
Both full-scale and model-scale ice covers can be modelled in SIBIS. An example of a model-
scale ice field is shown in Figure 2, and the corresponding floe size distribution is shown in 
Figure 3. An example of a full-scale broken ice field is presented later in this paper. 
 

 
Figure 2. Top: broken ice field picture from the large ice tank of the Hamburg Ship Model 

Basin (HSVA), bottom: the corresponding ice field input to SIBIS. 



 
Figure 3. Comparison of floe size distributions from the two images in Figure 2. 

 
The simulated ice cover in SIBIS is composed of individual ice fragments that respond in 6 
degrees of freedom (DOF) to accurate fully-nonlinear hydrostatic forces, skin and form drag 
forces, damping loads and contact forces from other ice floes, structures or boundaries in the 
simulation domain. Each ice fragment is characterized by a set of individual physical 
properties (geometry, density, flexural and compressive strengths, Young's modulus, 
Poisson’s ratio and friction coefficients). Therefore, it is possible to simulate ridge fragments 
and rubble fields in the ice cover, as well as multiyear or glacial ice inclusions. Furthermore, 
it is possible to assign statistical distributions to all individual properties of the simulated ice 
floes: both geometrical properties, such as the size and shape of the ice fragments, as well as 
mechanical properties such as the ice strength. 
 
In every ice-ice contact the pressure and frictional forces are calculated, and possible crushing 
and rafting processes between the ice floes are modelled. Furthermore, in the ice-structure 
contacts the ice crushing is taken into account, and the ice floes can fracture in bending and 
splitting modes against the structural interface. The other simulated loads on the structure 
include buoyancy, wind and current drag forces, damping loads, mooring reactions and 
propulsion forces. 
 
Given initial and boundary conditions, the SIBIS simulation engine computes for each time 
step the dynamics of the ice and the structure in 6 DOF, normal and frictional contact forces 
for ice-structure and ice-ice interactions, fluid-structure and fluid-ice interactions 
(hydrostatics and hydrodynamics) and the stationkeeping system behaviour and response. Ice 
fractures are modelled dynamically, depending on the actual physical configuration of the 
simulated system at each time step, i.e. the failure patterns are not pre-assumed. 
 
Throughout the simulation process the SIBIS software produces output files with loads on the 
structure (global and local), motions of the structure, and other relevant numerical data - for 
subsequent analysis and post-processing by the user. Finally, visualization of the simulation 
process can be performed by the SIBIS package both in real-time and after full completion of 
an individual simulation run. 



SIBIS MODEL CALIBRATION 
The SIBIS model has been calibrated against model-scale experiments of a floating drillship 
in managed ice conditions at the large ice tank of the Hamburg Ship Model Basin 
(Bonnemaire et al., 2015). A principle sketch of the corresponding numerical setup is shown 
in Figure 4: the vessel was moored to an underwater carriage moving forward along the basin, 
which was modelled with 4 static walls confining the ice cover. The simulated broken ice 
fields had a similar concentration and floe size distributions as the ones utilized in the model 
basin. A total of eight interactions performed in the ice basin were modelled numerically. This 
included ice covers of two different significant floe sizes, two ice thicknesses, and 
concentrations in the range from 70% to 90%. Special attention was paid to accurate 
replication and control of the initial ice floe size distributions, because it was one of the main 
steering parameters in the physical experiments. 
 

 
Figure 4. Principle sketch of the SIBIS numerical setup for ice basin simulations. 

 
The outcomes of the simulations were recorded and compared with the available model-scale 
data. Main focus was placed on the major processes that govern the global response level: 

• Response of the ice field, including mobilization of the ice field, confinement increase 
due to the boundary effects and interlocking effects (Figure 5); 

• Ice failure modes (bending, splitting, crushing), ice accumulation and material 
transport processes around the structure – both in-plane and sub-surface; 

• Response of the structure in different degrees of freedom; 
• Loads in the mooring system. 

 
Figure 6 shows two examples of comparisons between the achieved and simulated mooring 
loads. The experimental results are shown in red colour, while the numerical results are 
shown in blue colour. The load time series indicate that similar mooring load levels and trends 
are achieved along the ice basin. However, the time series differ locally. Exact replica is not 
expected due to the nature of interactions in broken ice. Those interactions are highly 
stochastic, and a small perturbation at some point may evolve into a substantially different 
global interaction. Furthermore, the interactions are short with just a few main oscillations. 
Therefore, it is challenging to compare the extreme values since several oscillations (or a 
longer interaction) may result in completely different extreme values. 



 
Figure 5. A comparison between ice interactions in the experiment and SIBIS simulation. 

 

 
Figure 6. Comparison of the measured (in red) and simulated (in blue) mooring load time 
series for 2 distinct interactions: a) 90 % concentration, large floes; b) 90 % concentration, 

small floes. The axes in the plots are not marked due to confidentiality restrictions. 
 
The model-scale results have also been used to calibrate the ice material accumulation and 
transport functionality in SIBIS. Figure 7 (middle row) qualitatively compares the simulated 
ice accumulation to the one achieved in the model tests (top row). Pre-broken rectangular ice 
pieces with a certain thickness were used in the numerical model to reproduce an ice sheet 
that would lead to ice accumulation. An ice basin configuration was used in SIBIS to tow the 
stern of the vessel through the ice field at a certain velocity, when the ice field was confined 
by the walls of the model tank. It can be seen in Figure 7 that the accumulation effects are 
quite well replicated by the SIBIS model. 

SIBIS MODEL APPLICATION 
After the numerical model had been calibrated against model-scale experimental data, it was 
applied for performance assessments of the vessel in realistic metocean conditions (Metrikin 
et al., 2015). First of all, the SIBIS model was used to evaluate a design change of the 
icebreaking stern of the vessel. In order to reduce the ice accumulations observed in the model 
tests, the thruster boxes were modified in an attempt to reduce the ice accumulations and cater 
for better ice material clearing in the stern area. The boxes were narrowed down and were 
extended deeper to provide more space for the ice clearing. Then, numerical simulations were 
performed with the SIBIS model in 180º and 165º astern configurations in 0.6 m and 1.2 m 
ice thicknesses, and it was verified that the modified stern has enhanced the ice clearing 
capabilities of the drillship (Figure 7, bottom row). Further material transport investigations 
could also be performed using the SIBIS model, in order to understand if the ice could be 
potentially transported into the moonpool of the drillship or foul its mooring lines. 



 

 
Figure 7. Measurements and simulations of the ice material accumulation and transportation 

processes. Top row: physical model test, middle row: SIBIS simulation with the original stern 
design, bottom row: SIBIS simulation with the improved stern design. 

 
The second application of the qualified SIBIS model was to produce a mapping of the 
vessel’s response to a set of interactions with realistic full-scale managed ice conditions, i.e. 
development of an M2L (Managed ice to Load) transfer function (Liferov, 2014). This 
included: 
 

• Definition and modelling of a set of relevant full-scale managed ice environments; 
• Simulation of the response of the hull when moored in the drifting ice fields; 
• Mapping the response of the vessel to a set of ice conditions (ice floe size 

distributions, concentrations and thicknesses). 
 
The outcome of the study could then be used to simulate operations at a particular 
geographical location, and estimate the operability and potential downtime of the drillship at 
that location. 



 
Figure 8. A full-scale managed ice field used for simulations in SIBIS. 

 
The broken ice fields used in the simulations were divided into two parts: a near-field area of 
managed ice and a far-field area where the floes were unmanaged. The ice concentration was 
the same over the whole ice field (both near-field and far-field), ensuring a uniform 
confinement over the whole ice cover. An example of the utilized ice field is shown in Figure 
8, where the simulation domain is 6000m long and 3500m wide, and the near-field managed 
ice domain dimensions are 1500m by 700m. The corresponding simulation setup in SIBIS is 
shown in Figure 9, and several snapshots from the dynamical simulation process are shown in 
Figure 10. Finally, an example of simulation results is given in Figure 11. 
 

 
Figure 9. SIBIS simulation setup for a vessel in managed ice. 

 



 
Figure 10. Bird-view snapshots from a SIBIS simulation in 90% ice concentration with 50m 

significant floe size and 0.5m thick ice floes (90° initial ice drift heading). 
 

 
Figure 11. Maximum mooring loads (normalized) for 180° initial heading. Each dot is for one 

run of each scenario: ice concentration and floe size distribution are constant, but the 
geometrical positions of the floes are rearranged. 10m, 30m and 50m are the managed ice floe 

sizes. The continuous lines show the upper-bound envelopes of the mooring loads. 



It can be seen in Figure 11 that the mooring loads increase almost linearly with the ice 
thickness. However, the load levels are 2 – 3 times higher at 90% ice concentration compared 
to 70% ice concentration. Furthermore, the load levels are 1.5 – 2 times larger for 50m ice 
floes compared to 10m ice floes. These trends are expected, and were confirmed to be in 
accordance with existing empirical formulations for managed ice loads on floating structures. 

DISCUSSION 
Interaction between a floating structure and a broken ice field is a complex process due to the 
highly nonlinear interdependency between the ice actions and the structural response. It is 
also a highly stochastic process, because the bearing capacity of the broken ice cover depends 
on the distribution and shapes of a large amount of individual ice fragments. Therefore, a 
small perturbation of an individual interaction event (e.g. rotation of an ice floe instead of 
fracture) may lead to a substantially different response of the ice cover in the long term, which 
in turn will lead to a different global action on the structure. Those properties are challenging 
with regards to both repeatability of a given interaction and estimation of the statistical 
parameters of a response time series (such as expected extremes). Therefore, a full replication 
of the ice-structure interaction process does not seem to be possible, and some deviations are 
perhaps unavoidable. Due to the stochastic character of the interactions, the measured and 
simulated responses should then be compared only with regards to trends, load levels and 
general dependencies on the structural response or the boundary conditions. 
 
The SIBIS numerical model is a good tool for simulating such complex interactions, because 
it captures the dynamical behaviour of the structure in all degrees of freedom (e.g. roll and 
pitch angles affecting the waterline and the associated local ice-structure interaction, and the 
yaw angle affecting the relative ice drift direction) as well as the ice field dynamics, including 
compaction, interlocking, formation of accumulations, ice transport effects, fracture of ice 
floes, friction, fluid effects etc. However, realistic simulations require a sufficiently precise 
numerical replica of the broken ice field (especially with regards to the ice concentration and 
floe size distribution), because even slight perturbations in the ice field may lead to significant 
disturbances of the load and response signals (as can be seen in Figure 11). Further 
investigations of those perturbations and a rigorous statistical analysis of the simulation 
results are subject to further research work with the SIBIS model. Furthermore, image 
processing methods for identification and extraction of individual ice floes and representative 
floe size distributions (Zhang and Skjetne, 2014a, 2014b; Zhang et al., 2015) are highly 
relevant to the problems discussed in this paper, and should be further explored. 
 
The main limitation of the current SIBIS model is the lack of validation against full-scale 
data. Therefore, there is currently an ongoing validation effort against the publically available 
Kulluk dataset, and additional dedicated full-scale measurements are being collected in 
Statoil-led expeditions and field trials for the purpose of validating SIBIS. Furthermore, the 
hydrodynamic model of SIBIS is currently being re-developed in order to include the added 
mass effects and a better numerical model for the damping loads. One of the ambitions with 
regards to hydrodynamics is to include functionalities for simulating waves in the broken ice 
field and combined wave-ice actions on offshore structures. Additionally, there is a need to 
develop an ice drift feature which would produce realistic motions of a broken ice field under 
the influence of winds and currents. With regards to ice mechanics, there is a need to develop 
a better brash ice model, functionality for ridge building in ice-ice contacts, and a model for 
consolidated ice rubble (e.g. cohesion in the keels of ice ridges). Finally, there is an on-going 
effort to improve the computational efficiency of the software by utilizing GPU 
parallelization and cloud computing technologies. 



CONCLUSIONS 
This paper presents a novel, independently developed numerical environment for simulating 
offshore operations in discontinuous ice – SIBIS (Simulation of Interaction between Broken 
Ice and Structures). The structure and capabilities of the software package are described in the 
paper, together with the input-output functionalities available to the user. Furthermore, 
calibrations of the numerical model against model-scale experiments of a floating drillship in 
broken ice conditions, described in the paper, demonstrate that SIBIS produces adequate 
results which can be used for preliminary performance assessments of the drillship’s 
operability in broken ice conditions. Application examples of the calibrated model include a 
design change of the hull structure of the drillship, and mapping of the vessel’s response to a 
set of interactions with realistic managed ice fields. In the latter example it is found that the 
global load trends, produced by SIBIS, are reasonable and in accordance with existing 
empirical formulations for global loads on floating structures from broken ice. Finally, some 
limitations of the numerical model are indicated and further development efforts are outlined. 
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