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ABSTRACT 

When designing a floating structure for regions where sea ice may occur, it is imperative to 

have an accurate prediction of the ice loads. Currently there is a big difference in predicted 

forces between several prediction methods. There is little full-scale load data to verify existing 

methods. Furthermore, it is not fully clear how well small-scale ice tank experiments can be 

scaled to full-scale. Force measurements on a meso-scale structure could bridge the gap 

between small-scale measurements and full-scale data. Results could be used to verify existing 

load models and develop new ones. 

  

This paper presents a concept design for a moored omnidirectional floating buoy with 

downward sloping sides to measure ice bending failure loads in field conditions. A numerical 

ice-buoy model is developed to optimise the design and to examine buoy behaviour when 

loaded by ice. The results show that for a shallow draft design a minimum waterline diameter 

of 8 m is needed to have ice bending failure up to an ice thickness of 0.6 m. In thicker ice, the 

buoy will incline too much and the ice will no longer fail in bending. To ensure the safety of 

the buoy design, a load limiting mechanics based on submersion of the buoy is proposed. This 

can limit the ice loads in ice thicker than 0.6 m. 

 

INTRODUCTION 

Currently there is little full-scale data available regarding the loading by level ice on moored 

floating structures. The only full-scale data set known to the authors comes from the Kulluk 

drilling vessel and is described in Wright (2000). Ice tank tests on moored floaters have been 

done by Bruun et al. (2011), Dalane et al. (2014), Jensen et al. (2008) and Løset et al. (1998). 

Because of the scaling laws applied in ice tank tests, the stiffness and strength of the ice is 

usually much lower than that of real sea ice. The similitude of ice tank tests to full-scale is 

debated. Palmer and Dempsey (2009) argue that the fracture behaviour changes by scaling the 

ice strength and stiffness. Other factors that might change are the load distribution on the hull 

and the transition between inertia- resonant and stiffness dominated interaction regimes. Meso-

scale experiments could provide information on the effect of scale in floater-ice interaction. It 

could bridge the gap between lab-scale and full-scale. An understanding of the differences 

between ice tank experiments on moored floaters and full-scale is imperative for the correct 

interpretation of ice tank test data and for the development and verification of ice loading 

models. 

 
POAC’15 
Trondheim, Norway 

Proceedings of the 23rd International Conference on 
Port and Ocean Engineering under Arctic Conditions 

June 14-18, 2015 
Trondheim, Norway 

  



 

The main purpose of a meso-scale ice measurement buoy would be to provide ice loading data 

that can be used to develop new load determination methods and to verify existing design 

calculations. Designing such a buoy is challenging.  

As mentioned above, the main reason to deploy a meso-scale buoy is that it is currently unclear 

how to properly calculate ice loads on a moored floating structure. Nevertheless, these ice loads 

must be calculated in order to make a reliable buoy design. Due to its size, a meso-scale buoy 

would need to be deployed in field conditions. This poses additional challenges, since the ice 

conditions cannot be controlled. Therefore the buoy would need to be able to withstand severe 

ice conditions relative to its size. Existing ice load calculation procedures do no longer apply 

in this case due to the large displacement and rotation of the buoy. 

 

An earlier study with a moored floater in field conditions is described by Toyama and Yashima 

(1985). In their experiments, a moored conical buoy with a top diameter of 3.3 m was deployed 

in a lagoon. It was loaded by saline ice with a thickness of 5.1 cm. The loading model as 

proposed by Toyama and Yashima predicted the ice loads fairly well. However, for such thin 

ice the crystalline structure of the ice might be significantly different from that of thicker ice. 

This might influence the failure behaviour. The crystalline structure of the ice is not described 

in the paper of Toyama and Yashima. A concept design for a meso-scale floater was proposed 

before by Bruun and Gürtner (2012). Bruun and Gürtner proposed a SPAR-type design with a 

waterline diameter of 9 m and a draft of 63.6 m. 

 

The concept presented in this paper is aimed at minimizing the size of the meso-scale buoy, 

while maximizing the range of ice conditions in which useful measurements can be obtained. 

The concept is designed such that ice bending failure will occur up to an ice thickness of 0.6 m. 

A shallow draft design is chosen because it better resembles existing floaters and floater 

concepts. To limit the ice loads in more severe ice conditions, a load limiting mechanism is 

proposed based on submersion of the buoy. In order to determine the ice loads and 

corresponding buoy behaviour, a numerical model of the buoy-ice system was developed. 

 

Section 2 describes the numerical model that was developed and used to determine the ice loads 

and buoy behaviour. Section 3 presents the concept buoy and mooring design. Section 4 

evaluates the buoy behaviour in various cases of interest. Section 5 discusses the possible uses 

and limitations of data acquired with a meso-scale buoy, and it elaborates on the limitations of 

the numerical buoy-ice model that was used in the design. Finally, Section 6 concludes the 

paper. 

 

BUOY-ICE MODEL 

A new buoy-ice model is developed for the concept design of the meso-scale buoy because 

existing ice loading models are not capable of capturing the highly non-linear behaviour that 

occurs in the limit case. The following section will explain the buoy-ice loading model and will 

attempt to place the model in the context of existing ice loading models. Load models differ in 

the following ways; 

 

 Whether they predict a maximum load or a temporal load signal. 

 Whether they assume simultaneous failure or non-simultaneous failure. 

 Whether they use analytical or numerical methods. 

 How they include the broken ice, cracking, plate vs. beam, 2D vs. 3D etc. 



Early analytical methods include Ralston (1977), and Croasdale and Cammaert (1994). These 

methods are also adopted in the ISO19906 code (2010). Toyama and Yashima (1985) were the 

first to include the influence of floater dynamics in their ice load calculations.  

Wille et al. (2011) compared the results from a dynamic ice loading model to ice tank model 

tests in order to study the applicability of a beam model for the ice. A similar model was used 

by Shkhinek et al. (2004) to model level ice action on floating anchored structure concepts for 

the Shtokman field. Models by Lubbad and Løset (2011) and Aksnes (2011) model the non-

simultaneous failure of the ice. A notable finding in the paper of Lubbad and Løset is that the 

transportation of broken ice pieces along the hull gives a significant contribution to the total ice 

resistance of icebreakers. The model described in Lu et al. (2014) studies the ice failure, rotation 

and ventilation phases in detail and gives a load signal in the time domain. 

 

Model overview 

The load model used in the design of the buoy considers the ice as four wedge shaped Euler-

Bernoulli beams on a Winkler foundation. The buoy is modelled by dividing the hull into a 

large number of small panels. The mooring lines are modelled using the catenary equation. 

This model is unique in that it combines a dynamic Finite Element ice model with a dynamic 

buoy and a non-linear catenary mooring line model. The model output gives a temporal ice 

load and buoy movement signal. An overview of the model is shown in Figure 1-2. 

 

 
Figure 1. Top view of buoy and ice model. The ice is modelled as four wedge-shapes Euler-

Bernoulli beams. 

 

Ice rubble is modelled as an upward force on the middle two ice beams. The thickness of the 

accumulated rubble is assumed to be at maximum three times the ice thickness and cannot 

extend below the underside of the buoy. The upward rubble force is assumed to extend away 

from the structure for half the structure diameter. The ice is supported by a Winkler foundation 

and is simply supported 50 m away from the structure. For the ice thickness range of interest, 

this is sufficiently far not to influence the failure behaviour of the ice. The contact between the 

buoy and the ice is modelled as a stiff spring. 



 
Figure 2. Side view of ice model. 

 

The buoy is modelled by dividing the hull surface into a large number of panels. This method 

was chosen because it can provide the correct hydromechanic restoring forces in any buoy 

orientation. This is needed because the buoy might show high pitch rotation in the limit case. 

The bottom might leave the water and the top might be submerged. Important model parameters 

are given in Table 1. 

 

Table 1. Model parameters.  

Parameter Symbol Value 

Young’s modulus ice E 5.00 (GPa) 

Flexural failure stress ice σf 350 (kPa) 

Density water Ρw 1025 (kg/m3) 

Density ice Ρi 900 (kg/m3) 

Ice-hull friction coefficient μ 0.2 

Ice thickness h Variable (m) 

Surge, sway, heave x,y,z Variable (m) 

Roll, pitch, yaw ϕ,θ,ψ Variable (o) 

 

Mooring system model 

The mooring restoring force in each timestep is calculated by solving the catenary equation for 

each section of mooring line. An overview of all variables is shown in Figure 3. 

 
Figure 3. Variables in the catenary mooring line model. 



 

Point 0 is where the mooring line touches the seafloor. At this point the vertical mooring force 

𝐹𝑦0 = 0. The horizontal mooring force is assumed constant over the mooring line; 𝐹𝑥0 =

𝐹𝑥1 … 𝐹𝑥𝑒𝑛𝑑. Points 𝟏 … 𝐧 indicate the locations of the clump weights, in which n is the number 

of clump weights lifted from the seafloor. Point 𝐞𝐧𝐝 indicates the connection point of the 

mooring line to the buoy. The variables used in the calculation are explained in Table 2.  

 

Table 2. Explanation of mooring line variables. 

Variable Explanation 

𝑋, 𝑌  Coordinate of end point of mooring. This is where the 

mooring line is attached to the buoy. In local coordinate 

system with origin at anchor point and x-axis parallel to 

horizontal component of mooring line. 

𝜇𝑠𝑢𝑏  Submerged weight per unit length 

𝑚𝑐𝑤  Submerged weight of clump weights 

𝑔  Gravity acceleration 

𝐿𝑡𝑜𝑡  Total length of mooring line 

𝑠𝑛  Length of mooring line section 𝑛  

𝐹𝑥𝑛𝑙 , 𝐹𝑦𝑛𝑙  Horizontal and vertical mooring force at left side of point 𝑛 

𝐹𝑥𝑛𝑟 ,  𝐹𝑦𝑛𝑟  Horizontal and vertical mooring force at right side of point 𝑛 

𝑥𝑛𝑙 , 𝑦𝑛𝑙 / 𝑥𝑛𝑟 , 𝑦𝑛𝑟   𝑥 𝑎𝑛𝑑 𝑦 coordinate in local coordinate system 

 

Using basic mathematics, the following identities can be derived for a catenary line (described, 

among others, by Weisstein, 2015); 

 

𝑎 =
𝐹𝑥

𝜇∙𝑔
     (1) 

 

 𝑥 = sinh−1 (
𝐹𝑦

𝐹𝑥
) ∙ 𝑎     (2) 

 

𝑦 = 𝑎 ∙ cosh (
𝑥

𝑎
)     (3) 

 
Note that the 𝑥 and 𝑦 values in the above formulas are not the 𝑥 and 𝑦 coordinates in the 

coordinate system as given in the above figure. Rather, the difference between the left 𝑥 

coordinate at point 𝐧 and the right 𝑥 coordinate a point 𝐧 − 𝟏 is the horizontal distance between 

point 𝐧 and point 𝐧 − 𝟏. The horizontal and vertical coordinates of the mooring attachment 

point can be calculated as follows;  

 

𝑋 = (𝑥𝑒𝑛𝑑 − 𝑥𝑛𝑟) + (𝑥𝑛𝑙 − 𝑥𝑛−1𝑟) + ⋯ + (𝑥1𝑙 − 𝑥0) + (𝐿𝑡𝑜𝑡 − 𝑠𝑛 − ⋯ − 𝑠0) (4)  
 
𝑌 = (𝑦𝑒𝑛𝑑 − 𝑦𝑛𝑟) + (𝑦𝑛𝑙 − 𝑦𝑛−1𝑟) + ⋯ + (𝑦1𝑙 − 𝑦0)   (5) 

 

The only unknowns in these equations are the horizontal mooring force 𝐹𝑥 and the mooring line 

length between the last lifted clump weight and the touchdown point 𝑠0. This gives a system of 

2 equations with 2 unknowns, hence a solution can be found. The solution is obtained using the 

bisection method. 

 

 



Ice model 

The ice is modelled as four wedge shaped Euler-Bernoulli beams on a Winkler foundation. 

This can be seen as a hybrid form between a simple beam model and a full plate model. 

Cracks in the ice plate are assumed to have already formed, giving the four wedge shaped 

beams. In the initial condition the model assumes simultaneous contact between the ice and 

the structure. This assumption gives a conservative force prediction. 

 

In order to verify the dynamic FEM wedge on elastic foundation model, its solution is 

compared to the analytical solution for a static case. The displacement and vertical load at the 

moment of failure is compared. The solution for a static wedge on elastic foundation is 

described in Nevel (1958, 1961). The wedge parameters as defined by Nevel are given in 

Table 3. The loading case that is used for verification is shown in Figure 4. 

 

Table 3: Wedge parameters. 

Variable Explanation 

𝑥 Distance along the wedge, 0 at (imaginary) tip 

𝑙 
√𝐸ℎ3

12𝑘

4

 = characteristic length 

𝜒 
𝑥

𝑙
 = non-dimensional distance along wedge 

𝐸 Young’s modulus 

𝑘 Foundation stiffness 

ℎ Ice thickness 

𝑏0 Width of the wedge at 𝑥 = 1 

𝑟 Waterline radius of buoy 

𝜏 𝜏 =
𝑟

𝑙
=Loading point of wedge, in non-dimensional distance 

𝐹𝑣 Vertical load at ice-structure interface 

 

 

 
Figure 4. Load case used for verification. 

 

Nevel formulates the solution of a wedge-shaped beam without distributed load as;  

 

 𝑦 = [𝑎𝐷𝑛2(𝜒) + 𝑏𝐷𝑛3(𝜒)]   (6) 

 



In which a and b are constants to be determined based on the boundary conditions, and 𝐷𝑛2 

and 𝐷𝑛3 are functions of 𝜒. The definition of 𝐷𝑛2 and 𝐷𝑛3 can be found in Nevel (1961). 

Because the displacement 𝑦 in the above formula is described in terms of the non-dimensional 

distance 𝜒, the moment and shear force formulations become; 

 

𝑀 =
𝐸𝐼

𝑙2 𝑦′′     (7) 

 

𝑉 =
𝑏0ℎ3𝐸

12𝑙2 ∙ 𝑦′′ +
𝐸𝐼

𝑙3 ∙ 𝑦′′′     (8) 

 

The constants a and b are computed by solving the following system of equations: 

 

[

𝐸𝐼(𝜏)

𝑙2
𝐷𝑛2

′′(𝜏)
𝐸𝐼(𝜏)

𝑙2
𝐷𝑛3

′′(𝜏)

𝑏0ℎ3𝐸

12𝑙2
∙ 𝐷𝑛2

′′(𝜏) +
𝐸𝐼

𝑙3
∙ 𝐷𝑛2

′′′(𝜏)
𝑏0ℎ3𝐸

12𝑙2
∙ 𝐷𝑛3

′′(𝜏) +
𝐸𝐼

𝑙3
∙ 𝐷𝑛3

′′′(𝜏)
] [

𝑎
𝑏

] = [
0
𝐹𝑣

]  (9) 

 

With 𝑎 and 𝑏 determined, the full analytical solution is known. The solution is compared to 

results from the FEM implementation. As can be seen in Figure 5, the FEM implementation 

predicts the same deformed shape as the analytical solution. This is as expected. The 

predicted failure load is 1.5% higher in the FEM model, most likely due to the grid size used. 

Given the inhomogeneous nature of ice, this difference is considered acceptable. 

 

 
Figure 5. Displacement predicted by analytical solution compared with FEM results. 

 

Comparison to existing models 

As model verification, the limit ice loads predicted by the current model are compared to limit 

loads predicted by two analytical methods that are proposed in the ISO code (ISO/FDIS 19906, 

2010). The model predicts peak ice loads that are lower than the loads predicted by Ralston’s 

method (Ralston, 1977) and higher than the loads predicted by Croasdale’s method (Croasdale 

and Cammaert, 1994). The comparison is shown in Figure 6. 

 



 
Figure 6. Comparison between the developed ice loading model and two commonly used ice 

load calculation methods. 

 

For this comparison the buoy was assumed fixed, since the methods used for comparison are 

developed for fixed structures. Ralston’s method gives a higher load prediction because this 

method assumes that radial cracks are formed simultaneously with circumferential cracks. The 

differences between the current method and Croasdale’s method mostly occur because 

Croasdale’s method does not take the curvature of the waterline into account. 

 

BUOY DESIGN 

The concept design presented in this paper is aimed at minimizing the size of the meso-scale 

buoy, while maximizing the range of ice conditions in which useful measurements can be 

obtained. Useful measurements can be obtained as long as the ice fails in downward bending. 

The buoy concept is designed such that ice bending failure will occur up to an ice thickness of 

0.6 m. This is assumed as the limit ice thickness for locally formed ice at the west coast of 

Spitsbergen. Unfortunately, no measurements of ice thickness on ice floes in this location are 

known to the authors. The choice of 0.6 m was made in consultation with experts on the ice 

conditions around the Svalbard Archipelago. However, 0.6 m is not the maximum ice thickness 

in this region; ice drifting in from the northeast can be thicker than 0.6 m. A load limiting 

mechanism based on submersion of the buoy is proposed to limit the ice loads in conditions 

more severe than 0.6 m level ice.  

 

There is chosen for a shallow draft design because it will be easier to install and can be installed 

in more shallow waters, which limits the cost of the mooring system. It also shows a better 

resemblance with existing full-scale structures and structure concepts. The minimum needed 

waterline diameter to get ice bending failure up to an ice thickness of 0.6 m is in the order of 8 

m. The reason for this is the needed pitch stability. As the buoy pitches, the waterline angle 

increases, which increases the horizontal ice load component at the moment of ice failure. This 

is a self-enforcing process; the ice load increases the pitch inclination, and the pitch inclination 

increases the horizontal ice load where failure occurs. It can lead to an unstable situation, in 

which the ice no longer fails in bending.  

 

The optimal draft of the buoy is influenced by several factors. When the mooring lines extend 

from the bottom of the buoy, it benefits the stability when the draft of the floater is as low as 

possible.  
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This minimizes the overturning moment caused by the horizontal component of the mooring 

loads. Other factors influencing the draft are the needed buoyancy and the height of the conical 

section needed to ensure bending failure in pitched conditions. Given the design considerations 

mentioned above, a concept buoy design was made. It is shown in Figure 7-8 . 

 

 
Figure 7. Concept buoy design. α = 45o (units in mm). 

 

 
Figure 8. Sketch of concept mooring system design. 

 

The vertical edge underneath the sloping waterline serves to deflect the broken ice. An outward 

sloping ice deflection skirt was considered, but was excluded from the concept design because 

it might prevent proper rubble clearance. A three-line mooring system is proposed. The clump 

weights on the mooring line cause a rapid increase of the vertical mooring load when the buoy 

is loaded by ice. This will cause the buoy to submerge when ice loads get too severe. The 

mooring system is designed for a water depth of 30 m. The total length of each mooring line is 

72 m. This mooring system can easily be adapted to shallower or slightly deeper water. In much 

deeper water the weight of the mooring chains becomes an issue and buoyancy needs to be 

added either on the buoy or on the mooring chains. 

 

  



BUOY BEHAVIOUR 

The buoy-ice model predicts a really strong influence of pitch motion on the ice failure load. 

This is supported by results of ice tank experiments described in Dalane (2014).  

The most interesting interaction regimes are when a geometrically scaled situation occurs and 

when the ice thickness approaches or exceeds the limit thickness where bending failure will 

occur. Both situations are discussed in this section. 

 

With a waterline diameter of 8 m, a geometrically scaled situation approximately occurs at an 

ice thickness of 10-20 cm. This corresponds to a full-scale floater the size of the Kulluk 

(waterline diameter of 70-81 m) loaded by level ice with a thickness between 1 and 2 m. 

Interestingly, the ice-buoy model predicts an alternation between stiffness dominated ice failure 

and inertia dominated ice failure. This is shown in Figure 9. The pitch inclination θ at the 

moment of stiffness dominated failure is 2.6o. 

 

 
Figure 9. Ice loads, mooring loads and failed ice length in the time domain for a floater loaded 

by 0.2 m level ice and an ice velocity of 0.1 m/s. 

 

With the buoy design as presented in Section 3, the ice fails in bending up to an ice thickness 

of 0.6 m. The buoy position right before ice failure is shown in Figure 10. The buoy has a pitch 

rotation θ of 16.2°, giving it a waterline angle (𝛼 + 𝜃) of 61.2°. 

 



 
Figure 10. Buoy position right before ice failure, ice thickness ℎ of 0.6 m and ice velocity of 

0.1 m/s. 

 

To limit the ice loads in ice conditions exceeding 0.6 m level ice, a load limiting mechanism 

relying on submersion of the buoy is proposed. It is based on a rapid increase of vertical 

mooring loads as the horizontal ice load increases, causing the buoy to submerge. 

 

Figure 11 shows the ice and mooring loads at the moment of ice failure. When the ice fails in 

bending, the vertical ice load increases linearly with the ice thickness. This is in accordance 

with what can be expected. The horizontal ice load increases much more rapidly, due to the 

change in inclination of the waterline. When the ice is thicker than 0.6 m, it does no longer fail 

in bending. The buoy inclines too much for bending failure to occur. The horizontal ice load 

and mooring load increase to the point where the vertical mooring load becomes sufficiently 

high to submerge the buoy. 

 

 
Figure 11. Ice and mooring loads at the moment of ice failure vs. ice thickness. 



DISCUSSION 

The behaviour of a meso-scale buoy will be inherently different from a full-scale buoy with 

similar geometry. This is because the ice strength is not scaled. In ice tank tests, Froude scaling 

and Cauchy scaling is usually applied. From this follows that the Young’s modulus and flexural 

strength of the ice must be scaled with geometry. Due to its size, a meso-scale buoy would need 

to be deployed in a natural environment. Therefore it would not be possible to maintain Froude 

and Chauchy scaling. A geometrically scaled situation would probably occur in some ice-buoy 

interactions. When assuming a geometrically scaled situation, the following challenges appear; 

 

 Ice load scales with λ2.17, while buoyancy scales with λ3. Because the weight of the 

mooring system is dependent on the ice load, the mooring weight can become problematic 

as the buoy size decreases. 

 The overturning moment of the ice loads scales with λ3.17, while the righting moment 

scales with λ4. This has as a consequence that in a geometrically scaled situation the buoy 

will show a much higher pitch than would occur in full-scale. 

Because of the above, the data acquired from a meso-scale buoy cannot be directly translated 

to an equivalent full-scale case. It will however provide useful information for the development 

of loading models that cannot be acquired in ice tank tests. One can think of the following 

aspects;  

 

 Fracture and failure behaviour of natural sea ice. 

 Load distribution on the hull; simultaneous vs. non-simultaneous failure. 

 The transition between inertia dominated, resonant, or stiffness dominated interaction 

regimes. 

These are all things that can be influenced by scale and by ice properties like stiffness and 

fracture toughness. The authors believe that information acquired from a meso-scale buoy can 

provide key information for the development of ice loading models and for the interpretation 

of ice tank test data. 

 

The buoy-ice model used in the design of the buoy is not considered valid in highly dynamic 

situations, such as loading by fast moving ice (velocity above 0.2 m/s) or the behaviour of the 

buoy after ice failure. The dynamic model parameters, such as hydrodynamic damping and 

added mass of the buoy, as well as the contact model between the ice and the buoy, are 

considered too simplistic for that. However, the maximum mooring load is expected to occur 

in a stiffness dominated regime, for which the model should work correctly.  

 

Another limitation of the model is the way in which broken ice wedges and rubble are included. 

The model is more simplistic in this aspect than other existing models. There are two arguments 

to justify the simplistic rubble assumptions; 

 

 Due to the small size of the buoy, the rubble will flow around relatively easy compared 

to a full-scale case, which reduces the importance of a rubble model. 

 The load associated with rotating the broken ice pieces and rubble is most important after 

the ice fails, and not when the peak load occurs. Therefore the peak load will not be 

influenced much by a more sophisticated rubble model. 



Given the above limitations, some remarks need to be made regarding the model results 

presented in Section 4. The inertia dominated failure, as is predicted to occur in 0.2 m level ice, 

is a strongly dynamic phenomenon. Therefore the model predictions for this regime might be 

different from what could occur in reality. However, this will not influence the buoy design 

because the highest mooring loads occur in the stiffness dominated regime. 

 

CONCLUSIONS 

In this paper a concept design for a meso-scale buoy is presented. For a shallow draft design, a 

minimum waterline diameter of 8 m is needed to ensure ice bending failure up to an ice 

thickness of 0.6 m. This is because of the needed pitch stability. In order to limit the ice loads 

in thicker ice, a load limiting mechanism is proposed based on submersion of the buoy. Data 

obtained from a meso-scale buoy in field ice conditions can supplement existing ice tank 

measurements by giving information about the effect of scale and ice properties on the 

following aspects; 

 

 Force distribution along the waterline. Simultaneous vs. non-simultaneous failure. 

 The transition between inertia dominated, resonant, or stiffness dominated interaction 

regimes. 

 The failure behaviour of the ice, must notably the formation of cracks and fracture. 

The numerical ice-buoy model that was developed for calibration of the buoy design predicts a 

large influence of pitch on the ice failure load. Due to the fact that the ice force cannot be scaled 

in field conditions, the results obtained from the buoy cannot be directly translated to a full-

scale case. The data obtained can however be used to verify and develop numerical load 

prediction models for floater-ice interaction. 
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