
 
 
 

PROBABILISTIC MODELING OF ICE LOADS USING 
COMPOSITE DISTRIBUTIONS FOR ICE REGIME 

PARAMETERS 
 

Petr N. Zvyagin1,2, Kirill E. Sazonov1 

1. Krylov State Research Centre, St. Petersburg, RUSSIA 
2. St. Petersburg State Polytechnical University, St. Petersburg, RUSSIA 

 
ABSTRACT 

In the paper the problem of ice loads distribution on extreme intervals is considered. 
Usually finding extreme values exceeding probabilities is connected with considering of ice 
regime parameters distribution’s “tails”.   

In the paper there are two approaches to describe of ice loads distribution “tail” 
presented. By the first approach, the probability density functions of ice regime parameters 
are estimated by piecewise linear functions, and then modeling of those parameters by the 
method of composition is conducted. After that, design formulas for ice pressure and ice loads 
easily could be employed, and quantiles of interest could be estimated statistically. 

In the second approach only “tails” of ice regime parameters are considered. For the 
“tails” the rectangular distribution was offered, and the theorem about the distribution of ice 
loads calculated by design formula was proofed. That theorem was used to calculate quantiles 
of ice loads. The example, which demonstrated good coincidence of both methods, was 
considered. 

 
INTRODUCTION 

The problem of ice loads probabilistic modeling needs appropriate tools for its solution. 
One of approaches to this problem, using stochastic processes model, was already offered by 
the authors earlier (Zvyagin and Sazonov, 2013).   

In the last 50 years (Korzhavin 1962; Loset et al. 1999) a number of formulas which 
relate ice regime parameters with ice pressure or ice loads were offered. These formulas could 
be applied for building stochastic models where maximum annual ice pressure is considered 
as random variable. In fact, the event “maximal ice pressure next year will exceed the specific 
level” is random, and thus the probability of this event can be related with maximal ice 
pressure models, given by investigators as well as in national codes. Therefore, the problem of 
estimating the probability of mentioned event reduces to the problem of random ice loads 
quantile finding. 

In the specific conditions ice regime parameters, considered as random, can be 
described by different distribution laws. With respect of this,iIn the paper the problem of 
random maximum annual ice load quantiles estimating is solved in two different ways. 

 
METHOD OF COMPOSITION 

Let us consider histogram of ice strength or ice thickness data measured in the local 
Arctic area of interest. Let us fix the number m  of intervals, on which the entire data range 
was split to plot this histogram. Then we can build the next piecewise linear function, based 
on the relative interval frequencies i , mi ..1 , to estimate unknown theoretical probability 
density function (PDF) of the random data:  
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In fact, the piecewise linear estimator  xf~  provides best fit to corresponding theoretical 
PDF in the sense of Chi-squared test.  

The idea of composition method is to use simple probability density functions to 
compose of them more complicated PDF. Particularly, we shall represent (1) by the next 
expression: 

  i

m

i
i fxf 




1

~ , 

















 




i

ii
ii

i

i

xx

xxx
xx

xx

f

,0

1
,0

1
1

1

   (2) 

 Here if  are PDFs of uniformly distributed random variables, which are easy to 
simulate by any appropriate statistical software.  

 

 
Figure 1. Ice thickness density histogram, presented in the paper (Pfaffling et al. 2006). 

 
 

 
Figure 2. Ice strength density histogram, given for Spitzbergen area by (Sinitsyna et. al. 

2013), based on field measurements on 22 500 m2, presented in (Shafrova and Moslet, 2006). 
 



Nowadays in the papers dedicated to ice regime parameters there are no univocal 
opinion about distribution laws of ice strength or ice thickness. Usually the standard 
distribution law, which has a good fit to the empirical histogram, has also a “tail” on the right 
side, which continues up to the infinity. This model provides non-zero probabilities for 
practically impossible events. At the same time, the right parts of a number of histograms for 
ice regime parameters (Sinitsyna et al. 2013, Pfaffling et al. 2006, Masaki et. al. 2006) have 
right “tails” which could be described by rectangular distribution. We can see that feature for 
histograms presented in the Figures 1 and 2. 

 
The ISO 19906 code (2010) recommends estimating maximum global pressure P  on 

structure according to the next formula: 
RhcP  ~      (3) 

where h  is the ice thickness, R  is the compressive ice strength, and c~ is some constant value, 
which depends on the structure width. Loset et al. (1999) in their overview compared a 
number of design formulas, which relate ice thickness, ice strength and ice pressure or loads 
in the way of (3).  

If ice condition parameters h  and R  are random variables, then global pressure P  is 
also random variable, and distribution law of P  will depend on distribution laws of  h  and R . 
According to ISO code (2010) and book of Palmer and Croasdale (2013), 16,0~  dc , and the 
power value   is negative. In Palmer and Croasdale (2013) the next range for this parameter 
in dependence of ice thickness is recommended: 3.05.0  . In this paper, having ice 
thickness h  random we shall take   as nonrandom value, and particularly 3,0 .  

Thus, for maximum effective global pressure we have according (Palmer and Croasdale 
2013): 

RhdP 3,016,0   
To estimate global force on the construction, we shall multiply the global pressure by 

the contact area, calculated in the simplest way: as a product of structure length and ice 
thickness. Thus, from (3) for global ice force we’ll have: 

 
RhdRchF 7,084,07,0  ,    (4) 

where we assume that c  is constant. Let us consider the structure of width 2d  m, and 
therefore we’ll have 8,184,016,0   dddc . Having distributions for ice thickness and ice 
strength we can say, that most adverse situation, which can be considered, is when these 
characteristics are at their maximum values:  42133,2 7,084,0

max  dF MN. But what is 
probability of such event? 

Let assume that h  and R  are independent random variables. We can use the method of 
composition to simulate h  and R  according to histograms presented in Figures 1 and 2, and 
get the histogram of global force F applying relation (4). This histogram presented in the 
Figure 3. Estimators of upper quantiles are presented in the Table 1. 

 
 

Table 1. Point estimators of global force p-quantiles (simulation results). 
p  Quantile estimator p  Quantile estimator 

0,5 0,5 8,6 0,975 0,025 25,75 
0,9 0,1 18,13 0,99 0,01 31,62 

0,95 0,05 21,97 0,995 0,005 35,29 
 



 
Figure 3. Histogram of simulated global ice force on construction of 2 m width. 

 
 

DISTRIBUTION OF ICE LOADS ON EXTREME INTERVALS 
Let us focus on high values of ice thickness and ice strength and take  “tails” of  h  and 

R  probability density functions as rectangular, and all other parts of these PDFs leave 
undefined: 
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Let us denote with  xf h
~  the PDF of random ice thickness, and with  xf R

~  − the PDF of 
random compressive strength: 
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Then the probability of random event A= """" 21 aRah   is 21 pp . 
For ice regime parameters histograms presented in the Figures 1 and 2 we can provide 

the next PDF estimators, taken respectively from papers (Pfaffling et al. 2006) and (Sinitsyna 
et. al. 2013): 
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Here 359,01 p , 142,02 p . For the further reasoning about maximal values and their 
probabilities, we shall take only “right part” of both distributions. Thus, we shall consider 
scenario, when strength and thickness are both from intervals of maximal values: 
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We shall denote this scenario as “Scenario of maximal values”. The probability of it is 
051,021 pp . Let us define the distribution of global ice force 1F  on the structure in the case 

of this scenario and with respect of relation (4).  
 
 We shall take into account that all of bounds 

1a , 
1b , 2a , 2b  (5) are greater than zero 

because of physical sense of considered random variables, and   11 ba , 22 ba  . At first let us 
provide a helpful corollary. 

 
Corollary. If random variable   is uniformly distributed on the segment  ba, , ,0a  

,0b  then random variable  , const , 0 , 1 , has the next probability density 
function:  
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The PDF curve of random variable h  with 7.0  built according (7), where h  has 

PDF (6 a), is presented in the Figure 4. 
 
 

 
Figure 4. Curve of PDF of random variable h , according to 7 a). 

 
Theorem. If random variable   is uniformly distributed on the segment  11,ba , and 

random variable   is uniformly distributed on the segment  22 ,ba , and ,01 a  ,01 b  ,02 a  
,02 b  const , 0 , 1 , then random variable   cX  has the next probability 

density function, if   1221 baba : 
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And the next probability density function, if 2112 baba   : 
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PROOF OF THE THEOREM 1 

Let us consider   1221 baba . Then for 2121 1
bcaxaca    we have: 
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 For  2112 bcbxbca    we have: 
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The proof for the second part of the theorem when 2112 baba    is similar to proof 

provided above. 



 
EXAMPLE OF APPLICATION 

Then we can consider  xf *  (8 a-b) as probability density function of random ice force 
*F  in “scenario of maximum values”. The curve of PDF  xf *  in the case of 8,01 a , 

3,21 b , 55,82 a , 0,132 b , 7,0 , 8,1c  is presented in the Figure 5. 
 

 
 

Figure 5. PDF of random variable RhF  7,0* 8,1  where h  and R  are random variables with 
PDF’s (6 a) and (6 b) respectively. 

 
The p~ -quantiles of random variable *F , which PDF is plotted in the Figure 5, with 

values of p~1~
 are presented in the Table 2. 

 
Table 2. Quantiles of global load in the case of “Scenario of maximal values”. 

p~  
~  p~ -quantile  p~  

~  p~ -quantile  
0,5 0,5 25,9 0,975 0,025 38,25 
0,9 0,1 34,64 0,99 0,01 39,59 

0,95 0,05 36,74 0,995 0,005 40,27 
 

As soon as 0 , we can say that event “Global ice force will be greater than 
 2121 ,max acbbca  ”, where parameter c  is taken according to formula (4), will occur only 

when  11 ,bah  and at the same time  22 ,baR . It means that   ~1 -quantiles of *F   will be 
 

~1 21 pp -quantiles of F , for  2121 ,max acbbcaF  . 
 
In our case   57,27,max 2121  acbbca . 
In the Table 3 we can compare estimators of  p-quantiles, got by probabilistic modeling 

according to the method of composition, and corresponding values of p~ -quantiles calculated 
for theoretical distribution evaluated in Theorem 1. The coincidence is very good in respect of 
inaccuracy of statistical estimation of p-quantiles of global force F. 

Thus, both of these methods could be used to estimate p-quantiles of global force F on 
the construction, if the model for F is of type (4), and experimental histograms for ice 
thickness and ice strength are known. The influence of contact area could be taken into 



account in calculations by usage of appropriate constant coefficients, related to construction 
width. 

 
Table 3. Comparison of estimators of F  quantiles got by modeling, 

and corresponding *F  quantiles got according to formulas (8). 
p =1-p p-quantile of  F, got 

by modeling (MPa) 
p~1~

  p~  p~ -quantile of *F  
(MPa) 

0,98 0,02 27,13 0,392 0,608 27,76 
0,985 0,015 29,42 0,294 0,706 29,6 
0,99 0,01 31,62 0,196 0,804 31,8 
0,995 0,005 35,29 0,098 0,902 34,71 

 
 

OUTCOMES 
In the paper proposed two methods of quantiles estimation. These methods are based on 

the formulas for ice pressure and ice loads which are used, with some variations, by a number 
of investigators (Korzhavin 1962, Loset et al. 1999) as well as in ISO standard (2010). Also 
method needs the presence of experimental histograms for ice regime parameters. 

The first method employs the probabilistic modeling of ice pressure/loads using method 
of composition. Thus we can get a statistics for parameter of interest, and then find point 
estimators for quantiles. 

The second method allows analytical calculating of probabilities of ice loads critical 
value exceeding, if only this value is relatively close to maximal possible ice load.  The 
method uses probability density function, evaluated in the Theorem 1 for extreme values of 
ice loads. 

The example, provided in the paper, demonstrates very good coincidence for 0,98-0,995 
quantiles, found by both of the methods. But these bounds of good coincidence are greatly 
depend on parameters of ice loads formula and ice regime histograms. 
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