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ϕ : Angle between the normal of the surface and a vertical vector 
:μ  Friction coefficient between hull and ice 

ρ :  Density 
Suffix 
i: Ice 
o: Values at the stem 
w: Water 
 

INTRODUCTION 
Dynamic positioning in ice is one of the most critical issues for the successful Arctic 
operation such as drilling. In particular, prediction of ice loads is one of the most challenging 
issues and experimental and numerical works have been conducted recently. Haase et al. 
(2013) introduced DYPIC (Dynamic Positioning in Ice) project and the model-scale 
experiment at the ice model basin to evaluate ice loads and performance of the DP system. 
They conducted both fixed and free-running model tests in various ice conditions and 
discussed the relation between ice loads and ice conditions. Jensen et al. (2009) reported that 
the turning moment from ice may be either stabilising or destabilising the vessel heading and 
shows significant change in time.  
Regarding numerical modeling of ice resistance in floe ice, Metrikin et al. (2012) proposed 
the numerical simulation method of a floater in a broken ice field by publicly available 
physics engines. Konno et al. (2013) developed the numerical method of resistance in a brash 
ice channel based on the physically based modeling. Kerkeni et al. (2013) used a physically 
based time-domain simulator to make capability plots of dynamic positioning in ice. 
Physically-based modelling is one of the most promising methods in this field. 
Understanding the physical mechanism is limited on the forces and moment exerted on the 
drillship in ice DP operation. In this regard, the mathematical work is indispensable. However 
few works have been done so far (for example, Bakkay, Coche and Riska, 2014).  
We conducted the experimental, numerical and mathematical works on the ice load for ships 
in managed ice condition. In the experimental works, both ice load measurement and DP 
experiments are conducted for the ship-shaped floater in managed ice conditions. Numerical 
simulation is conducted based on the physically based modeling. The mathematical 
expressions of the average ice forces and yaw moment are developed by extending the 
formula of resistance in small ice floes. Measured forces and moment in the fixed experiments 
are used for the validation of the numerical and mathematical works. 
 
EXPERIMENT 
Ice Model Basin 
Ice load measurements using the scaled-model of drillship were conducted at the ice model 
basin of the National Maritime Research Institute, Japan. Figure 1 and Table 1 show the 
section view of the ice model basin and specifications, respectively. 
 
Model Ship 
Table 2 shows the principal dimensions of the drillship. The model-to-ship scale ratio is 70. 
Figure 2 shows the photo of the model. 
 
Ice Conditions 
In order to simulate the managed ice condition, an ice sheet is cut into pieces with rectangular 
and triangular shapes (Figure 3). The area of the floe varies between 0.02 and 0.16 m2. The 
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Figure 6. Lever of yaw moment vs. drift angle 

 
Verification of the model 
Accuracy of the proposed model is verified by comparing with the measured forces and 
moment. For simplicity, we assume WEWEWE CCC == 21   in equations (8) and (9).  
Figure 13 shows the comparison of surge (left column) and sway (right) forces between 
measurements and prediction.  
 

 

 
 

Figure 7.  Comparison of surge and sway forces between measurements and predictions -1  
 
Measured ice forces are obtained by subtracting the forces measured in ice-free water from 
the total forces in ice. Reasonable agreement is obtained on the dependency of ice forces on 
the drift angle. Surge force is almost constant and sway force increases as the drift angle 
increases. Discontinuous change of the predicted sway force around θ=0 is due to the large 
change of LH against the drift angle. 
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Figure 8 shows the comparison of ice forces in terms of the dependency of ice thickness. It is 
observed that both of measured and predicted ice forces increases as the ice thickness. 
However the increase rate is small in the model compared to the measurement data. The 
present model predicted higher forces at the thinner ice and lower forces at the thicker ice. 

 
Figure 9 shows the comparison of yaw moment between measurements and prediction. It is 
found that reasonable agreement is obtained by the present simple formula. 
 

 
Figure 8. Comparison of surge and sway forces between measurements and predictions-2 

 
Figure 9. Comparison of yaw moment between measurements and prediction 

DISCUSSIONS 
Validity of the Simple Formula 
In the present model, no local failure and submergence of ice floes are assumed. It means this 
model is fundamentally suitable for ships with a conventional, non-icebreaking hull form. As 
for the resistance in small ice floes, it was verified by the model experiments at the ice model 
basin (Uto et al., 2015). The surge force is not sensitive to the drift angle if the angle is small. 
Thus the validity of the present model is verified to some extent for the surge force. 
It should also be noted that the validity of this model is confirmed for ice concentration of up 
to 0.8. It is reported that the original resistance model predicts higher resistance in small floes 
than the measured full-scale resistance in case of higher ice concentration. This is due to the 
contribution of local ice failure under such condition (Uto et al., 2015). Further validation is 
indispensable for the application to the severe ice conditions. In spite of these restrictions, the 
model is useful in the initial design of thruster sizing of the drillship in ice as well as the 
modeling of ice loads for the DP simulator in ice. 
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