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ABSTRACT 

When studying the dynamics of ice-structure interaction, hydrodynamic effects are often 

ignored to simplify the model. One of the challenges associated with the introduction of the 

hydrodynamic forces is that those introduce frequency dependent added mass and damping 

into the system. In order to include these two components in a time domain model with a non-

linear contact model, a convolution integral is needed to compute the response of the body. 

Computing the convolution integral is computationally intensive and as such undesired.  

 

In this paper a methodology is presented which allows the time domain response of a floating 

ice block (a rigid body) to be computed, including the effects of hydrodynamics, without 

having to resort to using a convolution integral. This is done by approximating the complex 

frequency response of the floating body with that of an equivalent dynamical system. By 

choosing a replacement system whose time domain representation can be readily solved with 

an ODE solver, the time domain response of the original floating ice block can be obtained 

without having to evaluate a convolution integral. Ultimately, a replacement system with only 

three degrees of freedom is needed to compute the time domain response of the floating block 

of ice with an error in the heave motion of about 0.1%.  

INTRODUCTION 

Studies on the interaction between a floating ice sheets and floating offshore structures have 

been ongoing for many years. In most studies this interaction process is considered to be 

quasi-static. However, when dealing with the interaction between ice and floating structures, 

the relative velocities can become high enough to violate the quasi-static assumption. During 

these high speed interactions, time dependent effects can no longer be ignored and need to be 

properly accounted for in order to accurate model the interaction process (Keijdener & 

Metrikine, 2014). There are two main sources of time dependent effects, namely due to the 

mass of the ice itself and due to hydrodynamics. The ice related ones are generally included in 

models concerned with dynamics whilst the hydrodynamic ones are not. In this paper a first 

step is made towards including hydrodynamics so that its effects on the interaction can be 

studied.  

 

The topic of hydrodynamics is certainly not unknown within the field of arctic engineering. It 

has been studied extensively in light of the attenuation of ocean waves as they travel through 

ice infested waters  (Squire, 2007). There have also been various studies on the hydrodynamic 

coupling of vessel of ice rubble motions (Isaacson & McTaggart, 1990; Tsarau, Lubbad, & 

Løset, 2014). However, in these models there is no direct contact between the ice and the 

structure.  
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Taking a step back to ice-floater interaction in general, two types of models can be identified, 

namely analytical and numerical. When dealing with dynamics the required contact model 

often becomes non-linear and so analytical models are no longer an option. However, 

currently there are only very few numerical models aimed at modelling the ice-floater 

interaction which also include the effects of hydrodynamics. There have been some studies 

related to iceberg impacts (Gagnon & Wang, 2012; Kim, Storheim, von Bock und Polach, & 

Amdahl, 2012) and another study on the effects of ventilation and back-fill (Lu, Løset, & 

Lubbad, 2012). However, all these studies were based on computationally intensive models.  

 

In this paper a first step is taken towards developing a numerically efficient way to include 

hydrodynamics in ice-floater interaction models. The principle idea is explained in this paper 

by deriving a fast time-domain model for a single piece of ice rubble. Even though the ice 

rubble is assumed to be rigid, it serves as a good starting point for the more complicated case 

when the ice is allowed to be elastic as in that case the resulting forcing on the ice is not only 

frequency dependent, but also wavenumber dependent. However, the rigid case covered in 

this paper is still valid for relatively small ice floes as those behave rigid and as such is also 

relevant on its own. 

 

The hydrodynamics has a strong influence on the heave and pitch motion of the block. Due to 

the limited number of pages allowed, this paper only covers the heave motion of the block. 

However, the procedure is exactly the same when applied to the pitch motion except that the 

force now has an arm. In addition, the derivation is only done for single block. If other blocks 

or a floating vessel is present the hydrodynamics of all these floating objects will be coupled. 

This will complicated the procedure described in this paper. As this paper is a first step, only a 

single block is considered.  

 

In the first part of this paper the frequency domain response (FDR) of the ice block is derived. 

In the second part a fast way to compute its time domain response is presented.  

DERIVATION OF THE ICE BLOCK’S FREQUENCY DOMAIN RESPONSE 

Before the FDR of the floating ice block can be approximated with that of the replacement 

system, the FDR of the rigid body (ice block) has to be derived. This is done next using a 

semi-analytical approach. The problem to be solved is illustrated in Figure 1. 

 

Figure 1: Problem definition 

 

The equation of motion (EoM) of the fluid is 



 𝜙̈ − 𝑐2Δ𝜙 = 0, ∀   𝑥 ∈ (−∞,∞)  ∩   𝑧 ∈ (−𝐻, 0) (1) 
   

where the velocity potential 𝜙 is a function of 𝑥,𝑧 and 𝑡, the dot accent denotes derivatives 

with respect to time, 𝑐  is the compressive wave speed of the fluid and Δ  is the Laplace 

operator. The boundary condition at the seafloor is 

 𝜙,𝑧|𝑧=−𝐻 = 0 (2) 
   

where ,𝑧  denotes a derivative with respect to 𝑧 and 𝐻  is the water depth. The boundary 

condition at the surface, including the interface with the rigid body, is 

 𝜙̈|
𝑧=0

+ 𝑔𝜙,𝑧|𝑧=0 = 0, ∀ 𝑥 ∉ [0, 𝐿] (3) 
   

 𝜙,𝑧|𝑧=0 = 𝑊̇, ∀ 𝑥 ∈ [0, 𝐿] (4) 
   

where 𝑔 is the gravitational constant and 𝑊 is the displacement of the body whose EoM is 

given by 

 
𝑚𝑊̈(𝑡) = ∫ 𝑝(𝑥̅, 0, 𝑡)

𝐿

0

𝑑𝑥̅ + 𝛿(𝑡) (5) 

   

where the ̅  denotes variables which are internal to the integral and 𝛿(𝑡) is the Dirac delta 

function. The delta function is used for the external force as this will result in the fundamental 

solution of the system. The pressure 𝑝 in the fluid has the following linearized form 

 𝑝(𝑥, 𝑧, 𝑡) = −𝜌𝑤𝑏(𝜙̇ + 𝑔𝑧) (6) 
   

where 𝜌𝑤  is the density of the fluid and 𝑏 is the width of the body. Since the pressure is 

evaluated at 𝑧 = 0 in the EoM of the body (Eq. 5), the hydrostatic pressure (−𝜌𝑤𝑏𝑔𝑧) at this 

depth is equal to the displacement of the body. Combining the last three equations, the body’s 

EoM can be rewritten as 

 
𝑚𝑊̈(𝑡) = ∫ −𝜌𝑤𝑏 (𝜙̇,𝑧(𝑥̅, 𝑧, 𝑡)|𝑧=0 + 𝑔∫ 𝜙,𝑧(𝑥̅, 𝑧, 𝜏)|𝑧=0

𝑡

0

𝑑𝜏)
𝐿

0

𝑑𝑥̅ + 𝛿(𝑡) (7) 

 

Finding the general solution of the fluid 

The first step in getting the FDR is to solve the fluid domain. This is done by assuming the 

following solution for the potential 𝜙 

 𝜙(𝑥, 𝑧, 𝑡) = 𝜙̃(𝑥, 𝑧, 𝜔)𝑒𝑖𝜔𝑡 (8) 
   

where 𝜔  is the frequency and the tilde accent denotes a transformed variable. This is 

substituted in the EoM of the fluid (Eq. 1) to get 

 −𝜔2𝜙̃ − 𝑐2Δ𝜙̃ = 0, ∀   𝑥 ∈ (−∞,∞)   ∩   𝑧 ∈ (−𝐻, 0) (9) 
   

Next, the integral Fourier transform (Eq. 11) is applied along the 𝑥-direction to obtain the 

following ordinary differential equation (ODE) for 𝜙̃̃  

 −𝜔2𝜙̃̃ − 𝑐2 (𝜙̃̃,𝑧𝑧 − 𝑘
2𝜙̃̃) = 0, ∀  𝑧 ∈ (−𝐻, 0) (10) 

   

 
𝑓(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

, 𝑓(𝑡) =
1

2𝜋
∫ 𝑓(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔
∞

−∞

 (11) 

   

Solving this ODE and applying the boundary condition at the seafloor results in the following 

expression 



 

𝜙̃̃(𝑘, 𝑧, 𝜔) =
cos(𝜆(𝑧 + 𝐻))

cos(𝜆𝐻)
𝐴(𝑘, 𝜔), ∀  𝑧 ∈ [−𝐻, 0), 𝜆 = √

𝜔2

𝑐2
− 𝑘2 (12) 

   

where 𝑘 is the wavenumber in horizontal direction, 𝜆 is the wavenumber is vertical direction 

and 𝐴(𝑘, 𝜔) is the complex amplitude. Using this result, the expression for the interaction 

pressure, given by Eq 6, can be rewritten to become 

 
𝑝(𝑘, 0, 𝜔) = −

𝜌𝑤𝑏

𝑖𝜔
(−𝜔2 − 𝑔𝜆 tan(𝜆𝐻))𝐴(𝑘, 𝜔) = −𝜌𝑤𝑏𝑄(𝜔, 𝑘)𝐴(𝑘, 𝜔) 

(13) 

   

where 𝐴(𝑘, 𝜔) is the only unknown. 

 

 

 

  



Discretization of  the pressure at the interface 

Now that fluid domain satisfies its boundaries and its pressures can be computed, the focus 

can shift to the fluid pressures at the interface with the body. This will make it possible to find 

the unknown amplitude of the potential, 𝐴(𝑘, 𝜔).  
 

In order to find the amplitude, the assumption is made that the interface pressure can be 

expressed as a summation of unknown forcing functions, 𝐹𝑛(𝜔), analogous to D'Alembert's 

principle. The mathematical expression as well as an illustration are given below. 

 
𝑝∗(𝑥, 0, 𝜔) = ∑

𝐹𝑛(𝜔)

Δ𝑥
𝐻 (

Δ𝑥

2
− |𝑥 − 𝑥𝑛|)

𝑁

𝑛=1

, 𝑥𝑛 = Δ𝑥
(2𝑛 − 1)

2
,

Δ𝑥 =
𝐿

𝑁
 

(14) 

   

 
Figure 2: An illustration of the discretized interaction pressure 𝑝∗ as given by Eq. 14. Note 

that the pressure is zero if 𝑥 ∉ [0, 𝐿]. 
 

where 𝐻(. . ) is the Heaviside function, 𝑛 is the element-id, Δ𝑥 is equivalent to an element size, 

𝑥𝑛  is the centre of each element and 𝑁  is the total number of elements. The free-surface 

boundary condition given by Eq. 3 is included correctly in the assumed formulation because 

the surface pressure outside the domain of the rigid body is equal to zero. Application of the 

integral Fourier transform over 𝑥 on this expression gives 

 
𝑝∗(𝑘, 0, 𝜔) = ∑𝐹𝑛(𝜔)

𝑁

𝑛=1

Υ𝑛(𝑘),

Υ𝑛(𝑘) =
1

Δ𝑥
∫ 𝐻 (

Δ𝑥

2
− |𝑥̅ − 𝑥𝑛|) 𝑒

−𝑖𝑘𝑥̅
∞

−∞

𝑑𝑥̅ 

(15) 

   

By equating the “exact” (𝑝) and assumed form (𝑝∗) of the interface pressure, a relation 

between the unknown amplitude 𝐴(𝑘, 𝜔) and the unknown forcing functions is obtained 

 
𝐴(𝑘, 𝜔) =

∑ 𝐹𝑛(𝜔)
𝑁
𝑛=1 Υ𝑛(𝑘)

−𝜌𝑤𝑏𝑄(𝜔, 𝑘)
 (16) 

   
With this step the unknown has shifted from the amplitude of the potential 𝐴(𝑘, 𝜔) to the 

amplitude of the interface forces 𝐹𝑛(𝜔). 
 

Equation of motion of the rigid body 

With the interaction pressure discretized, the focus can finally shift to the rigid body. With its 

EoM an expression for the unknown amplitude of the interface forces 𝐹𝑛(𝜔) can be obtained. 

To start, the assumed form of the interaction pressure is substituted into the EoM of the body 

(Eq. 5). After this, the EoM is transformed to the frequency domain to get 

𝑝̃∗ 



 
−𝑚𝜔2𝑊̃ = ∫ 𝑝∗(𝑥̅, 0, 𝜔)

𝐿

0

𝑑𝑥̅ + 1 (17) 

   

The integral on the right-hand side is now evaluated. The domain of each 𝐹𝑛 has a width of Δ𝑥 

as can be seen in Figure 2. Since each 𝐹𝑛 is constant within its domain, the integral over each 

Heaviside function results in a multiplication with Δ𝑥. This gives Δ𝑥/Δ𝑥 and so the EoM 

becomes 

 
−𝑚𝜔2𝑊̃ = ∑𝐹𝑛(𝜔)

𝑁

𝑛=1

+ 1 (18) 

   

At this point the kinematic continuity condition given by Eq. 4 is needed to express the 

displacements of the rigid body, 𝑊̃, in terms of the potential.  

 

The condition in its original form is continuous and applies to any value of 𝑥 which falls 

within the domain of the body. The condition is very strong and need not be enforced on the 

current system. Because of this, the condition is relaxed by saying that it only has to hold at 

certain points. As there are 𝑁 unknown 𝐹𝑛’s, 𝑁 equation are needed to find them. As such the 

kinematic condition is enforced at 𝑁 points to obtain 𝑁 equations. As the fluid is continues, a 

representative value has to be used for each point. The value used for each point is the 

average fluid velocity of the element associated with that particular point. Mathematically the 

relaxed condition can be expressed as 

 
𝑖𝜔𝑊̃ = 𝜙̃,𝑧|𝑧=0, ∀ 𝑥 ∈ [0, 𝐿]      →      𝑖𝜔𝑊̃ =

1

Δ𝑥
∫ 𝜙̃,𝑧(𝑥̅, 0, 𝜔)
𝛼Δ𝑥

(𝛼−1)Δ𝑥

𝑑𝑥̅,

∀  𝛼 = 1. . 𝑁 

(19) 

   

where 𝛼 is the identifier for each equation. This result is now substituted back into the EoM of 

the body (Eq. 18) to get 

 𝑖𝜔𝑚

Δ𝑥
∫ 𝜙̃,𝑧(𝑥, 0, 𝜔)
𝛼Δ𝑥

(𝛼−1)Δ𝑥

𝑑𝑥 = ∑𝐹𝑛(𝜔)

𝑁

𝑛=1

+ 1 (20) 

   

𝜙̃,𝑧 on the left hand side can be rewritten using the definition of the inverse Fourier transform 

(Eq. 11) in combination with the previously found expression for 𝜙̃̃ (Eq. 12) to get 

 
−
𝑖𝜔𝑚

2𝜋

1

Δ𝑥
∫ ∫ 𝐴(𝑘,𝜔)𝜆 tan(𝜆𝐻) 𝑒𝑖𝑘𝑥

∞

−∞

𝑑𝑘
𝛼Δ𝑥

(𝛼−1)Δ𝑥

𝑑𝑥 = ∑𝐹𝑛(𝜔)

𝑁

𝑛=1

+ 1,

∀  𝛼 = 1. . 𝑁 

(21) 

   

The integral over 𝑥 is solved 

 
−
𝑖𝜔𝑚

2𝜋

1

Δ𝑥
∫ 𝐴(𝑘,𝜔)𝜆 tan(𝜆𝐻)

1

𝑖𝑘
(𝑒𝑖𝑘𝛼Δ𝑥 − 𝑒𝑖𝑘(𝛼−1)Δ𝑥)

∞

−∞

𝑑𝑘 = ∑𝐹𝑛(𝜔)

𝑁

𝑛=1

+ 1,

∀  𝛼 = 1. . 𝑃 

(22) 

   

Next the integral over the Heaviside function Υ𝑛(𝑘) is solved 

 
Υ𝑛(𝑘) =

1

Δ𝑥
∫ 𝐻 (

Δ𝑥

2
− |𝑥̅ − 𝑥𝑛|) 𝑒

−𝑖𝑘𝑥̅
∞

−∞

𝑑𝑥̅ =
𝑖

Δ𝑥

1

𝑘
(𝑒−𝑖𝑘𝑛Δ𝑥 − 𝑒−𝑖𝑘(𝑛−1)Δ𝑥),

∀  𝛼 = 1. . 𝑁 

(23) 

   



This result is substituted back into the EoM, together with the expression for 𝑄(𝜔, 𝑘) (Eq. 13) 

and the expression found for 𝐴(𝑘, 𝜔) (Eq. 16). The result is 

 
−
𝜔2𝑚

2𝜋𝜌𝑤𝑏

1

Δ𝑥2
∑𝐹𝑛(𝜔)

𝑁

𝑛=1

∫
𝜆 tan(𝜆𝐻)

𝑘2
𝑒−𝑖𝑘𝑛Δ𝑥 − 𝑒−𝑖𝑘(𝑛−1)Δ𝑥

−𝜔2 − 𝑔𝜆 tan(𝜆𝐻)
(𝑒𝑖𝑘𝛼Δ𝑥

∞

−∞

− 𝑒𝑖𝑘(𝛼−1)Δ𝑥) 𝑑𝑘 = ∑𝐹𝑛(𝜔)

𝑁

𝑛=1

+ 1, ∀  𝛼 = 1. . 𝑁 

(24) 

   

In this final expression the only unknowns are the 𝐹𝑛’s. As there are now also 𝑁 equations the 

𝐹𝑛’s can be solved for. Obtaining the solution requires evaluation of the integral due to the 

inverse Fourier transform over 𝑘. This evaluation is done next. 

 

SOLVING THE INVERSE FOURIER INTEGRAL 

The integral will be solved using contour integration. First the integral is reformulated 

 
℧(𝑛, 𝛼, 𝜔) = ∫

𝐶(𝜔, 𝑘)

𝐷𝐸(𝑘, 𝜔)
(𝑒−𝑖𝑘𝑛Δ𝑥 − 𝑒−𝑖𝑘(𝑛−1)Δ𝑥)(𝑒𝑖𝑘𝛼Δ𝑥 − 𝑒𝑖𝑘(𝛼−1)Δ𝑥)

∞

−∞

𝑑𝑘 (25) 

   

 
𝐶(𝑘, 𝜔) = −

𝑚𝜔2

2𝜋𝜌𝑤𝑏

1

Δ𝑥2
𝜆 sin(𝜆𝐻) ,

𝐷𝐸 = 𝑘2 cos(𝜆𝐻) (−𝜔2 − 𝑔𝜆 tan(𝜆𝐻)) 

(26) 

   

To simplify solving the integral, it is split into four parts  

 ℧(𝑛, 𝛼, 𝜔) = 𝐼𝛼,𝑛 + 𝐼𝛼−1,𝑛 + 𝐼𝛼,𝑛−1 + 𝐼𝛼−1,𝑛−1

= ∫
𝐶(𝑘,𝜔)

𝐷𝐸(𝑘, 𝜔)
𝑒𝑖𝑘Δ𝑥(𝛼−𝑛)

∞

−∞

𝑑𝑘

− ∫
𝐶(𝑘,𝜔)

𝐷𝐸(𝑘, 𝜔)
𝑒𝑖𝑘Δ𝑥((𝛼−1)−𝑛)

∞

−∞

𝑑𝑘

− ∫
𝐶(𝑘,𝜔)

𝐷𝐸(𝑘, 𝜔)
𝑒𝑖𝑘Δ𝑥(𝛼−(𝑛−1))

∞

−∞

𝑑𝑘

+ ∫
𝐶(𝑘,𝜔)

𝐷𝐸(𝑘, 𝜔)
𝑒𝑖𝑘Δ𝑥((𝛼−1)−(𝑛−1))

∞

−∞

𝑑𝑘   

(27) 

   

These four integrals are solved using contour integration. Three cases exist for each integral, 

resulting in a total of 12 integrals to solve. As the three cases are very similar for all four 

integrals a general form is solved  

 
𝐼𝑝1,𝑝2 = 𝑐𝑠∫

𝐶(𝑘,𝜔)

𝐷𝐸(𝑘, 𝜔)
𝑒𝑖𝑘Δ𝑥(𝑝1−𝑝2)

∞

−∞

𝑑𝑘 (28) 

   

where 𝑐𝑠 is a constant which contains the sign of the original integrals (see Eq. 27). In order to 

use contour integration, the integrand must evaluate to zero along the complex part of the 

semi-circle. This means that the integrand, 𝐷𝐸∗, must go to zero when 𝑘 goes to infinity.  

 
𝐷𝐸∗ =

𝜆 tan(𝜆𝐻) 𝑒𝑖𝑘Δ𝑥(𝑝1−𝑝2)

𝑘2(−𝜔2 − 𝑔𝜆 tan(𝜆𝐻))
 (29) 

 
 
 

  

  



   

lim
𝑘→?
. lim

𝑘→?
𝜆 = lim

𝑘→?
tan(𝜆𝐻) = lim

𝑘→?
𝐷𝐸∗ = 

∞ 
√
𝜔2

𝑐2
−∞2

= 𝑖𝑘 

𝑖 tanh(𝑘𝐻)
= 𝑖 

𝑖𝑘𝑖𝑒𝑖𝑘Δ𝑥(𝑝1−𝑝2)

𝑘2(−𝜔2 − 𝑔𝑖𝑘𝑖)
= −

𝑒𝑖𝑘Δ𝑥(𝑝1−𝑝2)

𝑔𝑘2
= 0 → ok 

−∞ 
√
𝜔2

𝑐2
−∞2

= 𝑖𝑘 

𝑖 tanh(𝑘𝐻)
= 𝑖 

𝑖𝑘𝑖𝑒−𝑖∞Δ𝑥(𝑝1−𝑝2)

𝑘2(−𝜔2 − 𝑔𝑖𝑘𝑖)
= −

𝑒−𝑖𝑘Δ𝑥(𝑝1−𝑝2)

𝑔𝑘2
= 0 → ok 

𝑖∞ 
√
𝜔2

𝑐2
+∞2

= 𝑘 

tan(𝑘𝐻)
= undefined 

𝑘 tan(𝑘𝐻) 𝑒−𝑘Δ𝑥(𝑝1−𝑝2)

−𝑘2(−𝜔2 − 𝑔𝑘 tan(𝑘𝐻))
=
tan(𝑘𝐻) 𝑒−𝑘Δ𝑥(𝑝1−𝑝2)

𝑔𝑘2 tan(𝑘𝐻)

=
𝑒−𝑘Δ𝑥(𝑝1−𝑝2)

𝑔𝑘2
= 0 → 𝑝1 > 𝑝2 

−𝑖∞ 
√
𝜔2

𝑐2
+∞2

= 𝑘 

tan(𝑘𝐻)
= undefined 

𝑘 tan(𝑘𝐻) 𝑒𝑘Δ𝑥(𝑝1−𝑝2)

−𝑘2(−𝜔2 − 𝑔𝑘 tan(𝑘𝐻))
=
𝑒𝑘Δ𝑥(𝑝1−𝑝2)

𝑔𝑘2
= 0 

→ 𝑝1 < 𝑝2 

Table 1: The integrand evaluated at the various limit cases of 𝑘 

 

In order to satisfy the condition at infinity, certain conditions apply to the relation between 𝑝1 

and 𝑝2. Two conditions already present themselves in the third and fourth row, namely 𝑝1 >
𝑝2 in the upper half plane (ℑ(𝑘) > 0) and 𝑝1 < 𝑝2 in the lower half plane. For the third and 

last case when 𝑝1 = 𝑝2 there are no requirements on which half plane must be used. Despite 

the absence of a decaying exponent, the integrand still converges to zero for this special case 

because the denominator is second order in 𝑘. With the three cases specified, each is now 

solved in turn. 

 

Solving case 1: 𝑰𝒑𝟏<𝒑𝟐 

𝐼𝑝1,𝑝2 is solved for the domain where 𝑝1 < 𝑝2. As shown before in Table 1, the contour has to 

be closed over the bottom half plane (ℑ(𝑘) < 0). Using a clockwise contour integral gives 

−2𝜋𝑖 due to the residue theorem. The solution to the integral is 

 
𝐼𝑝1<𝑝2 = −2𝜋𝑖𝑐𝑠∑

𝑒𝑖𝑘𝑞Δ𝑥(𝑝1−𝑝2)

𝜕𝐷𝐸 𝜕𝑘⁄ |𝑘=𝑘𝑞
𝐶(𝑘𝑞 , 𝜔)

∞

𝑞=1

, 𝑝1 < 𝑝2 (30) 

   

where 𝑘𝑞 are the roots of the dispersion. The integral has been solved but the solution requires 

the roots of the following dispersion equation  

 𝐷𝐸 = 𝑘2 cos(𝜆𝐻) (−𝜔2 − 𝑔𝜆 tan(𝜆𝐻)) (31) 
   

The equation has three sets of roots; one set due to the 𝑘2, one due to the cosine and one due 

to the terms in the brackets. Each set is analysed  

 The 𝑘2  gives two roots which are 𝑘 = 0. The root would cause the entire system 

(including the fluid) to move as a rigid body which is not realistic for this problem and 

so this root is not included. 

 The cosine has roots when 𝜆𝐻 = 𝜋 (
1

2
+ 𝜍)  ∀ 𝜍 ∈ ℤ . However, substituting these 

roots into the dispersion equation gives  



𝑘2(0) (−𝜔2 − 𝑔𝜆
sin(𝜆𝐻)

(0)
) = −𝜔2𝑘2(0) − 𝑘2𝑔𝜆 sin(𝜆𝐻) = −𝑘2𝑔𝜆 sin(𝜆𝐻) ≠ 0 

Which means that roots of the cosine are not actually roots of the dispersion equation. 

 As it turns out, the only roots which are valid are the roots from the last term inside 

the brackets: −𝜔2 − 𝑔𝜆 tan(𝜆𝐻).  
These roots can be found numerically. It is important to note that the roots are symmetrical 

with respect to the origin. This means that if the set of roots from the upper half plane is 

called 𝑘̂𝑞, the ones from the lower half plane would be equal to −𝑘̂𝑞. With this in mind Eq. 30 

is updated 

 
𝐼𝑝1<𝑝2 = −2𝜋𝑖𝑐𝑠∑

𝑒−𝑖𝑘̂𝑞Δ𝑥(𝑝1−𝑝2)

𝜕𝐷𝐸 𝜕𝑘⁄ |𝑘=−𝑘̂𝑞

∞

𝑞=1

𝐶(−𝑘̂𝑞 , 𝜔), 𝑝1 < 𝑝2 (32) 

   

Solving case 2:  𝑰𝒑𝟏>𝒑𝟐 

𝐼𝑝1,𝑝2 is solved for the domain where 𝑝1 > 𝑝2. As shown before, the contour has to be closed 

over the upper half plane, resulting in a counter-clockwise contour (giving +2𝜋𝑖) 
 

𝐼𝑝1>𝑝2 = 2𝜋𝑖𝑐𝑠∑
𝑒𝑖𝑘̂𝑞Δ𝑥(𝑝1−𝑝2)

𝜕𝐷𝐸 𝜕𝑘⁄ |𝑘=𝑘̂𝑞

∞

𝑞=1

𝐶(𝑘̂𝑞 , 𝜔), 𝑝1 > 𝑝2 (33) 

   

Solving case 3:  𝑰𝒑𝟏=𝒑𝟐 

𝐼𝑝1,𝑝2 is solved for the special case when 𝑝1 = 𝑝2. The integral contour is zero independently 

of whether it is closed over the upper or lower half plane and so the choice of plane is 

arbitrary. Here the upper plane is chosen due to its flamboyant nature 

 
𝐼𝑝1=𝑝2 = 2𝜋𝑖𝑐𝑠∑

1

𝜕𝐷𝐸 𝜕𝑘⁄ |𝑘=𝑘̂𝑞

∞

𝑞=1

𝐶(𝑘̂𝑞 , 𝜔), 𝑝1 = 𝑝2 (34) 

   

Solutions to the actual integrals 

The same principles which were used to solve the general case also apply to the four actual 

integrals. Because of thus the answers are directly written down in the table below.  

 

Integral Half 
plane 

𝑐𝑠 Quadrant 
sign 

𝑐𝑠,𝑓𝑖𝑛𝑎𝑙 𝑝1 𝑝2 𝑘̂𝑞,𝑠𝑖𝑔𝑛𝑒𝑑 

𝐼𝛼>𝑛 Upper +1 +1 +1 𝛼 𝑛 +𝑘̂𝑞 

𝐼𝛼−1>𝑛 Upper −1 +1 −1 𝛼 − 1 𝑛 +𝑘̂𝑞 

𝐼𝛼>𝑛−1 Upper −1 +1 −1 𝛼 𝑛 − 1 +𝑘̂𝑞 

𝐼𝛼−1>𝑛−1 Upper +1 +1 +1 𝛼 − 1 𝑛 − 1 +𝑘̂𝑞 

𝐼𝛼<𝑛 Lower +1 −1 −1 𝛼 𝑛 −𝑘̂𝑞 

𝐼𝛼−1<𝑛 Lower −1 −1 +1 𝛼 − 1 𝑛 −𝑘̂𝑞 

𝐼𝛼<𝑛−1 Lower −1 −1 +1 𝛼 𝑛 − 1 −𝑘̂𝑞 

𝐼𝛼−1<𝑛−1 Lower +1 −1 −1 𝛼 − 1 𝑛 − 1 −𝑘̂𝑞 

𝐼𝛼=𝑛 Upper +1 +1 +1 1 1 +𝑘̂𝑞 

𝐼𝛼−1=𝑛 Upper −1 +1 −1 2 1 +𝑘̂𝑞 

𝐼𝛼=𝑛−1 Upper −1 +1 −1 1 2 +𝑘̂𝑞 

𝐼𝛼−1=𝑛−1 Upper +1 +1 +1 2 2 +𝑘̂𝑞 

Table 2: All three cases (>,< and =) for each of the four integrals from Eq. 27.  



 

With this table the solution to any of the twelve integrals can be obtained by making the 

appropriate substitutions into the following equation 

 
𝐼𝑝1,𝑝2 = 2𝜋𝑖𝑐𝑠,𝑓𝑖𝑛𝑎𝑙∑

𝑒𝑖𝑘̂𝑞,𝑠𝑖𝑔𝑛𝑒𝑑Δ𝑥(𝑝1−𝑝2)

𝜕𝐷𝐸 𝜕𝑘⁄ |𝑘=𝑘̂𝑞,𝑠𝑖𝑔𝑛𝑒𝑑

∞

𝑞=1

𝐶(𝑘̂𝑞,𝑠𝑖𝑔𝑛𝑒𝑑, 𝜔) (35) 

   

Making all the required substitutions and adding everything up gives the following solution to 

the original inverse Fourier integral (Eq. 25) 

  

 
℧(𝑛, 𝛼, 𝜔) = ∫

𝐶(𝑘,𝜔)

𝐷𝐸(𝑘, 𝜔)
(𝑒−𝑖𝑘𝑛Δ𝑥 − 𝑒−𝑖𝑘(𝑛−1)Δ𝑥)(𝑒𝑖𝑘𝛼Δ𝑥 − 𝑒𝑖𝑘(𝛼−1)Δ𝑥)

∞

−∞

𝑑𝑘

=

{
 
 

 
 
𝐼𝛼−1>𝑛 + 𝐼𝛼>𝑛 + 𝐼𝛼>𝑛−1 + 𝐼𝛼−1>𝑛−1 𝛼 − 1 > 𝑛
𝐼𝛼−1=𝑛 + 𝐼𝛼>𝑛 + 𝐼𝛼>𝑛−1 + 𝐼𝛼−1>𝑛−1 𝛼 = 𝑛 + 1
𝐼𝛼−1<𝑛 + 𝐼𝛼=𝑛 + 𝐼𝛼>𝑛−1 + 𝐼𝛼−1=𝑛−1 𝛼 = 𝑛
𝐼𝛼−1<𝑛 + 𝐼𝛼<𝑛 + 𝐼𝛼=𝑛−1 + 𝐼𝛼−1<𝑛−1 𝛼 = 𝑛 − 1
𝐼𝛼−1<𝑛 + 𝐼𝛼<𝑛 + 𝐼𝛼<𝑛−1 + 𝐼𝛼−1<𝑛−1 𝛼 < 𝑛 − 1

,

∀  𝛼 = 𝑛 = 1. . 𝑃 

(36) 

   

This spacious expression can be simplified by observing that the following equality holds for 

all cases 

 𝐶(−𝑘̂𝑞 , 𝜔)

𝜕𝐷𝐸 𝜕𝑘⁄ |𝑘=−𝑘̂𝑞
= −

𝐶(𝑘̂𝑞 , 𝜔)

𝜕𝐷𝐸 𝜕𝑘⁄ |𝑘=𝑘̂𝑞
= −Θ (37) 

   

This equality is substituted in Eq. 32 and Eq. 33  

 
𝐼𝑝1<𝑝2 = −2𝜋𝑖𝑐𝑠∑

𝑒−𝑖𝑘̂𝑞Δ𝑥(𝑝1−𝑝2)

𝜕𝐷𝐸 𝜕𝑘⁄ |𝑘=−𝑘̂𝑞

∞

𝑞=1

𝐶(−𝑘̂𝑞 , 𝜔) = 2𝜋𝑖𝑐𝑠∑Θ𝑒−𝑖𝑘̂𝑞Δ𝑥(𝑝1−𝑝2)
∞

𝑞=1

= 2𝜋𝑖𝑐𝑠∑Θ𝑒𝑖𝑘̂𝑞Δ𝑥(𝑝2−𝑝1)
∞

𝑞=1

, 𝑝1 < 𝑝2 

(38) 

   

 
𝐼𝑝1>𝑝2 = 2𝜋𝑖𝑐𝑠∑

𝑒𝑖𝑘̂𝑞Δ𝑥(𝑝1−𝑝2)

𝜕𝐷𝐸∎ 𝜕𝑘⁄ |𝑘=𝑘̂𝑞

∞

𝑞=1

𝐶(𝑘̂𝑞 , 𝜔) = 2𝜋𝑖𝑐𝑠∑Θ𝑒𝑖𝑘̂𝑞Δ𝑥(𝑝1−𝑝2)
∞

𝑞=1

,

𝑝1 > 𝑝2 

(39) 

   

Since 𝑝1  and 𝑝2  both go from 1. . 𝑃 , they can be interchanged. This means that 𝐼𝑝1<𝑝2 =

𝐼𝑝1>𝑝2 and that 𝑝1 − 𝑝2 and 𝑝2 − 𝑝1 can be replaced by a new variable Δ𝑝 which is equal to 

| 𝑝1 − 𝑝2|. Using this simplification, the expression for ℧(𝑛, 𝛼, 𝜔) can be greatly simplified. 

By directly taking into account the signs from Table 2 ℧(𝑛, 𝛼, 𝜔) becomes 

 
℧(𝑛, 𝛼, 𝜔) = {

2𝐼Δ𝑝(0) − 2𝐼Δ𝑝(1) Δ𝑝 = 0

−𝐼Δ𝑝(Δ𝑝 − 1) + 2𝐼Δ𝑝(Δ𝑝) − 𝐼Δ𝑝(Δ𝑝 + 1) Δ𝑝 = 1. . 𝑃 − 1
,

Δ𝑝 = |α − n|   ∀   𝑛 = 𝛼 = 1. . 𝑁 

(40) 

   

With a small tweak the first case be included in the second one. The expression for ℧(𝑛, 𝛼, 𝜔) 
then reduces to its simplest possible form 

 ℧(𝑛, 𝛼, 𝜔) = −𝐼Δ𝑝(|Δ𝑝 − 1|) + 2𝐼Δ𝑝(Δ𝑝) − 𝐼Δ𝑝(Δ𝑝 + 1),

Δ𝑝 = |α − n|   ∀   𝑛 = 𝛼 = 1. . 𝑁 
(41) 

   

Solving for 𝑭𝒏(𝝎) 



With the integral solved, the unknown force amplitudes 𝐹𝑛(𝜔) can now be solved  

 
∑𝐹𝑛(𝜔)(℧(𝑛, 𝛼, 𝜔) − 1)

𝑃

𝑛=1

= 1, ∀  𝛼 = 1. . 𝑁 (42) 

   

From this equation a coefficient matrix 𝑪𝑭𝑴  of size [𝑁,𝑁]  can be established with the 

following entries  

 𝑪𝑭𝑴[𝑛, 𝛼](𝜔) = ℧(𝑛, 𝛼, 𝜔) − 1, ∀  𝛼 = 𝑛 = 1. . 𝑁 (43) 
   

This matrix is symmetric and each diagonal line contains the same value (symmetric Toeplitz 

matrix) because of the property explained before (Eq. 37). Because of this, only 𝑁 evaluations 

of ℧(𝑛, 𝛼, 𝜔) are required to fill the entire matrix. Finally, the following equation is obtained 

which can be solved for the unknown force amplitudes 

 𝑪𝑭𝑴(𝜔)𝑭(𝜔) = 𝟏 (44) 
   

where 𝑭(𝜔) is a [𝑁, 1]-vector containing the unknown amplitude of all the interface forces 

𝐹𝑛(𝜔). Using the following equation, which is based on Eq. 18, the complex frequency 

response of the body to an impulse load can be obtained 

 
𝑊̃(𝜔) =

(∑ 𝐹𝑛(𝜔)
𝑁
𝑛=1 ) + 1

−𝑚𝜔2
 (45) 

   

 

With tis expression the complex frequency domain response of the ice block is known, which 

concludes the first part of the paper. In the last part of the paper a fast way to compute the 

time domain response is presented.  

NUMERICALIZATION 

With the complex-valued FDR known, the time domain response can be obtained using an 

inverse Fourier integral (Eq. 11) over frequency 

 
𝑊(𝑡) =

1

2𝜋
∫ 𝑊̃(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔
∞

−∞

 (46) 

   

This integral can be evaluated in a number of ways. The most straightforward way would be 

to numerically compute the integral directly. However, that formulation would not be 

compatible with non-linear forces (e.g. contact forces). Another option would be to calculate 

the impulse response of the system in the time domain and then use a convolution integral to 

obtain the response to a non-linear force. This approach is not desirable as it is 

computationally intense.  

 

The options which will be pursued here is to use numericalization. Before explaining what 

this means and how it works, the FDR is scaled with respect to the hydrostatic stiffness as this 

makes the output easier to read. As the system is linear the response can simply be scaled by 

multiplying it with the scaling factor 

 
𝑊̃(𝜔) = 𝐹̃𝑒𝑥𝑡

(∑ 𝐹𝑛(𝜔)
𝑁
𝑛=1 ) + 1

−𝑚𝜔2
, 𝐹̃𝑒𝑥𝑡 = 1𝑘ℎ𝑠 (47) 

   

The 1 in the force has a unit of meters. By using numericalization the FDR function of a 

reference system (in this case that of the floating rigid body given by Eq. 47) is approximated 

with one of a replacement system whose time domain representation allows for 

straightforward numerical implementation (Figure 3). The replacement system can then be 



used to compute the time-domain response of the reference system. The main advantage is 

that now an ODE solver can be used instead of having to use a convolution integral.  

 

Figure 3: A mass-spring-dashpot system. 

Replacement systems 

The simplest building block for creating such replacement systems are rigid bodies. As they 

are inherently discrete, their numerical implementation is trivial, making them perfect for 

numericalization. To illustrate the idea, a single mass-spring-dashpot (MSD) system is used, 

see Figure 3. Its EoM is transformed to the frequency domain to obtain its FDR function 

 𝑚̂𝑥̈ + 𝑐̂𝑥̇ + 𝑘̂ = 𝛿(𝑡)    
ℱ
→   −𝜔2𝑚̂𝑥̃ + 𝑖𝜔𝑐̂𝑥̃ + 𝑘̂𝑥̃ = 1 → 

𝑥̃ =
1

𝑘̂ − 𝑚̂𝜔2 + 𝑖𝜔𝑐̂
 

(48) 

   

The goal is for the replacement system’s FDR (Eq. 47) to be the same as that of the reference 

system (Eq. 48). As such the following equation should be strived for 

 
𝐹̃𝑒𝑥𝑡

(∑ 𝐹𝑛(𝜔)
𝑁
𝑛=1 ) + 1

−𝑚𝜔2
=

1

𝑘̂ − 𝑚̂𝜔2 + 𝑖𝜔𝑐̂
 (49) 

   

This condition can never be satisfied exactly, hence numericalization being an approximation 

of the FDR. To relax the condition, a frequency range which only contains the first natural 

frequency of the reference system is considered. As the FDR function of the reference system 

was normalized, the value for 𝑘̂  is known and is 1 [N/m]. This leaves two parameters to 

optimize using an optimization library, namely the mass and the dashpot.  

 

 

Figure 4: Fitting with a single mass replacement system. The grey line is solution computed 

using the results from the first part of the paper and the black line the solution computed using 

the replacement system.  

 

As can be seen, the matching is already quite good even with only a single body. In order to 

improve the fit, additional frequency dependent parameters need to be introduced to increase 

the flexibility of the replacement system’s FDR function. Although a single body only has 



three parameters for matching its complex frequency response to that of the target system, 

multiple bodies can be connected together to create large discrete systems with greatly 

increased flexibility. Note that increasing the number of bodies to improve the quality of the 

fit comes at the cost of increased computation time. Figure 5 shows a two and three body 

replacement system.  

 

Figure 5: Adding an additional body increases the flexibility of the replacement system from 

3 parameters to 7. A third body adds an additional 8. 

With these extra bodies there are additional degrees of freedom (DOF) in the replacement 

systems, namely 𝑥2 and 𝑥3. Despite these DOF having a displacements and a velocity, they 

have no physical meaning. Their only purpose is to increase the flexibility of the FR function 

of the main DOF (𝑥1) by increasing the number of parameters in its FR functions which can 

be used for fitting. Only the state of 𝑥1 has a physical meaning as only the FR of this body is 

matched to that of the reference system.  

RESULTS 

Figure 6 shows the fit for replacement system of one, two and three bodies. The three body 

system has an overall error of about 1 mm (or 0.1%) compared to the impulse response of the 

reference system shown in Figure 4.  

 

 

Figure 6: Fit quality using a replacement systems of 1,2 and 3 bodies. The error is absolute 

difference between the exact solution derived in the first part of the paper and the various 

replacement systems introduced as depicted in Figure 5 and Figure 6.  



From these results it can be seen that the heave motions of the ice block can be replaced by a 

system with three bodies and the error will be minimal. The same can be for the pitch motion 

using the same procedure. In total this will result in a system with about 7 bodies. This 

replacement system can then be used to calculate the time-domain response of the ice block 

when subjected to nonlinear loading, greatly improving the speed compared to using 

convolution integrals.  

CONCLUSION AND RECOMMENDATIONS 

The methodology showcased in this papers results in a numerically efficient way to compute 

the response of a floating ice block whilst incorporating the effects of hydrodynamics. An 

replacement system with only three degrees of freedom is already sufficient to accurately 

capture the behaviour of the floating body. Solving three bodies with an ODE solver to 

compute the time domain response is much faster than using a convolution integral, providing 

a significant boost in calculation time.  

 

This paper introduced the methodology for the case of a rigid body. Future work will focus on 

extending the methodology to get a time domain representation of a flexible beam of finite 

length.  
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