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ABSTRACT 
In the paper the probabilistic properties of formula for global ice pressure, which is 

provided by the code ISO 19906, are considered. Ice regime parameters are taken as random 
variables with lognormal distribution. The relation between moments of ice regime 
parameters and ice pressure quantiles are derived theoretically for introduced probabilistic 
model. The example of quantiles calculation is provided. The influence of ice regime 
parameters mutual correlation on the calculated ice pressure value is investigated. The 
influence of powers in the formula on the mean of resulting pressure is discussed and the 
theorem about mean minimum is formulated and proved.    

 
INTRODUCTION 

Probabilistic modelling of ice pressure and ice loads can imply different approaches, 
depending on generalization of the model of ice-structure interaction. Common approach is to 
model random ice features, calculate loads caused by them on the structure according to the 
model of mechanical interaction, and then estimate the pressure. The more generalized 
approach leaves particular ice features behind the consideration, and has deal only with 
dynamics of ice loads time series (Zvyagin and Sazonov, 2013). From these positions, 
consideration of design formulas for maximal ice pressure and ice load seems to be even more 
generalized approach than mentioned above.  

At the same time, design formulas recommended by national standards as well as by a 
number of investigators summarize the experience in this area. But probabilistic properties of 
these formulas when their components are random variables are not investigated at the 
moment. Certainly these probabilistic properties greatly depend on the type of components 
distribution. Also probabilistic properties depend on the construction of the formula, signs of 
the powers, etc.  

All of these properties could be roughly investigated statistically by conducting 
statistical modelling with usage of appropriate software. But in some cases these properties 
could be derived analytically. Further such investigation is performed for effective global ice 
pressure formula recommended by standard ISO 19906 and lognormal distribution of ice 
regime parameters. This type of distribution is rather widely met in papers dedicated to 
analysis of ice conditions. 

 
LOGNORMAL DISTRIBUTION OF ICE REGIME PARAMETERS 

The lognormal distribution is not the only which is used to describe ice regime 
parameters distribution (Sinitsyna et al. 2013), a number of other continuous distributions like 
Gamma, Beta, Weibull and others are used for this purpose. Despite of this, in some of cases 
(Johnston et al. 2009; Sinitsyna et al. 2013; Masaki et al. 1996) lognormal distribution 

 
POAC’15 
Trondheim, Norway 

Proceedings of the 23rd  International Conference on 
Port and Ocean Engineering under Arctic Conditions 

June 14-18, 2015 
Trondheim, Norway 



provides the best fit to the empirical histogram. At the same time, this type of distribution has 
a number of profitable properties. 

In their overview of Arctic multi-year ice thickness, Johnston et al. (2009) proposed the 
lognormal distribution for the data. They claim that histogram of the data of multi-year ice 
thickness they collected from different sources is well enough described by lognormal 
distribution. Their data was aggregated from 4987 measurements of different investigators. 
However, the special statistical investigation of ice thickness distribution law is rather rare, 
usually only histograms without any investigation are presented.  From histograms of ice 
thickness presented in the paper (Bourke and Garret, 1987) and in Workshop on ice thickness 
proceedings (Wadhams and Amanatidis (Editors), 2006) we can make conclusion that 
lognormal distribution seems to be plausible for this ice regime parameter.   

For ice compression strength there are more statistical analysis can be found. In the 
paper of Masaki et al. (1996) the results of measurements made in Saroma Lagoon by 
Takeuchi et al. in March 1995 are discussed. In that paper it is stated that distribution of ice 
strength can be taken as lognormal. Truskov et. al. (1992) had fitted lognormal distribution to 
observations of ice compressive strength measured on the Northeastern part of Sakhalin shelf 
(Figure 1). The investigation of how different distributions fit compressive ice strength 
experimental histograms was conducted by Synitsina et al. (2013); among the others the 
lognormal distribution was investigated and for some of the compressive strength data this 
distribution had provided good fit. 

 

 
Figure 1. Frequency distribution of the unconfined compressive strength of ice in the 

Northeastern part of Sakhalin (Masaki et al., 1996). 
 
 

In fact, lognormal distribution corresponds to the product of a number of independent 
random variables and it can provide good fit for distribution of other ice regime parameters, 
such as ice drift velocity. In (Nesterov et al, 2009)  the histogram of ice drift velocity 
measured in the North-Eastern Barents Sea is presented, which corresponds lognormal 
distribution.  

Adjusting the lognormal distribution curve to data we should agree that data points are 
independent observations of the same random variable. Such condition is not always met 
practically, and the distribution fitting is senseless in the case when this is not met. 

 
 
 



MODEL OF GLOBAL ICE PRESSURE BASED ON DESIGN FORMULA 
Global ice pressure, as well as global ice force, should somehow be dependent on such 

ice regime parameters as ice thickness and ice strength. National standards of different 
countries offer formulas for calculating of maximum possible ice pressure on the structure. 
Standards SNiP 1982, API RP-2N 1995 (Loset et al. 2010), ISO 19906 code (2010, equation 
A.8.21) imply the next formula to estimate effective ice pressure P : 

 
 dRhP ;  (1)  

Here h is ice thickness, d is contact area width, and R is compressive ice strength; , , 
,  are some constants. In the earlier formula given by Korzhavin (1962) parameters , ,  
were set by the value 1. In a number of formulas for ice pressure given by later authors (Loset 
et al. 1999, 2010) as well as in the ISO Standard’s formula those parameters take on different 
values. Particularly in the ISO Standard (2010) it is recommended to estimate maximum 
effective global ice pressure according to the formula 
 

RhdP n 16.016.0      (2)  
where n is an empirical coefficient, taken as 55.0 hn   if 1h  m and as 3.0n  if 1h  
m (Palmer and Croasdale, 2013).  

If we shall consider ice regime parameters h and R in the right part of (1) and (2) as 
random variables, then pressure P  will be also random variable. Then, having the distribution 
laws for h and R we can estimate the histogram for P  using probabilistic modeling or, in 
some cases, find theoretical distribution law for P . 

Design formulas (1)-(2) are constructed to describe the general relation between 
maximum pressure on a structure caused by a plain ice sheet and the characteristics of this ice 
sheet. Parameters , , ,   in (1) are estimated by the authors according to the available field 
data, and at usual they provide best fit to the specific data set. The problems regarding the 
reliability of these formulas and their relevance to the physical reality are discussed by a 
number of authors, starting from Korzhavin (1962) through the present (Loset et al., 1999, 
2010). 

 
PROBABILISTIC MODEL OF PRESSURE WHEN ICE REGIME PARAMETERS 

ARE INDEPENDENT 
Basing on the ISO formula (2) for effective pressure and on the assumption of 

parameters h and R lognormality we shall propose the probabilistic model for the ice pressure. 
Correlation of h and R is another important factor for the probabilistic model. However, there 
is a lack of publications about experiments where the statistics for ice thickness and ice 
strength were measured at the same time. Therefore, it is difficult to find univocal opinions 
about how these parameters can be statistically related. 

In this section we shall consider random ice regime parameters h and R as independent.  
To avoid randomness in the power of random variable h using formula (2), we shall take the 
power value  as constant.  

 It is well-known, that the product 1  of two random variables h  and R  with lognormal 
distributions raised to the constant powers  and , and multiplied by constant c, 

 Rch1 ,   (3)  

has a lognormal distribution irrespective of statistical dependence or independence of h and R. 
If 1  has lognormal distribution, h  and R  are independent, then  ce1  where    is 
distributed normally with next mean a  and standard deviation  : 
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where Mh  and MR  are theoretical means of random h  and R  respectively;  h  and  R  
are standard deviations of these random variables. Then probability of the event 211 ll   
where 1l , 02 l , can be calculated by the formula: 
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If we shall denote p-quantile of  1  with px , then 

  capx p ln5.0exp 1   .    (7)  
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, and  x1  is inverse Laplace 

function.  
The lognormality of the global pressure is a subject of discussion. However, the 

lognormal stochastic model for local ice loads time series already have been studied by 
Zvyagin and Sazonov in 2010, and histograms of ice pressure presented by Fransson and 
Olofsson (2005) and measured in field conditions do not contradict the supposition of their 
lognormal distribution. 

To provide an example of calculations we shall consider a structure of width 10d m, a 
formula (2) and independent parameters of h and R, both with lognormal distribution. For 
practical calculations all theoretical moments of considered random variables will be replaced 
by their point estimators. For the ice thickness, we take data of the fast ice thickness in the 
Sea of Okhotsk made at Chaivo Station (Shirasawa et al, 2005). The average value of the fast 
ice thickness on the 15th of March was 76.0Mh  m, and the standard deviation was 

118.0h  m.  
In this example we take the coefficient 35.0576.05.0 n  using mean value 0.76 

of ice thickness. Thus, the power of h in formula (2) is 19.0 . 

 
Figure 2. Histogram of lognormally distributed effective global ice pressure modelling results. 



 
For the parameter of the ice strength R we shall take statistics for the one-year ice 

strength observations in Okhotsk Sea made by Truskov and presented also by Sinitsyna et al. 
(2013): 04.2MR  MPa, 36.0R  MPa. As a distribution law for R, we take the lognormal 
law, which agrees with the data described in the mentioned paper and with Figure 1 in which 
the histogram of ice strength for nearby region is presented.  

Thus, if we denote    exp16.0dP  then we can calculate parameters of normally 
distributed variable   according to (4) and (5): 752.0a , 175.0 , and for constant 

cofactor we have: 692.016.0 d . Quantiles of global pressure, calculated according formula 
(7) using mentioned parameters are provided in the Table 1. These results can be compared 
with results of software probabilistic modelling of effective global ice pressure (Figure 2) 
according the formula (2) with the same parameters. In the Figure 2 the corresponding 
probability density curve is presented as well. 

 
Table 1. Quantiles of random global effective ice pressure given by ISO formula (2). 

p p-quantile px , MPa p p-quantile px , MPa 
0,005 0,935 0,95 1,96 
0,01 0,978 0,975 2,07 

0,025 1,044 0,99 2,2 
0,05 1,1 0,995 2,306 

 
 

PROBABILISTIC MODEL OF PRESSURE WHEN ICE REGIME 
PARAMETERS ARE CORRELATED  

As it was said earlier, there is no univocal opinion, how ice thickness h and ice 
compressive strength R are related statistically. For probabilistic modelling it is profitable to 
take these parameters as independent. At the same time, Timco and Frederking (1990) 
summarised results of the plain ice sheet strength and made a conclusion that the ice strength 
for plain ice normally increases with increasing ice thickness. This strengthening occurs 
because ice salinity decreases with increasing ice thickness. Therefore we can suppose 
positive correlation between h and R. 

Let denote in relation (3)  ,exp h    expR  and   expRh , where  ,   and   
are normally distributed random variables with means a , a  and a  and standard deviations 

 ,   and   respectively, and correlation coefficient  of variables h and R is . Then  

  aaa ,     22 2   r ,   (8)  

where r is correlation coefficient of variables   and  . The relation between r and  is given 
by the next formula (Johnson and Kotz, 1972): 
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This relation allows us to simulate global effective ice pressure    exp16.0dP  
knowing enough information about h and R and correlation of them.  In addition we can 
provide one profitable relation, which we can easily get applying infinitesimal functions 
properties. If 2

  and 2
  are very small (to say, each of them is less than 0.05), then we can 

use the next relation: 
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If the product   is also very small, then 
r . 

Introducing positive correlation of ice regime parameters to formula (2) we should be 
ready to one contradictory result in probabilistic modelling. The combination of positive 
correlation between h and R, and negative power  of h will provide us more likely smaller 
values of global pressure, than in the case of independent h and R.  

This contradiction can be theoretically justified for lognormally distributed  components 
of formula (1). To avoid this contradiction it could be recommended to use powers of formula 
(1) components of the same sign, and to introduce auxiliary factors instead of rational powers 
for taking in account so-called “size-effect” of global pressure. 

In general, mean value MP  of effective global ice pressure given by (1) depends on first 
two theoretical moments of h and R, including mixed second moment (covariance) as well as 
on distributions of h and R. But at the same time, values of powers  and  are of great 
importance for determining MP . Whether these values are large or small by their absolute 
values, whether they are positive or negative – all of this influences the resulting MP . The 
next theorem allows to find minimum of MP  in depend of values  and  in relation (1), 
knowing parameters of random h and R.  

Theorem. Let h  and R  in (3) be correlated lognormal random variables,   exph  
with parameters   ,a ,   expR  with parameters   ,a , and correlation coefficient of   
and   is r , 11  r . Then, the global minimum of the ice pressure mean MP is provided by 
the next values of powers: 
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Proof of Theorem. The natural logarithm of the ice pressure mathematical estimation, 
 2exp 2
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is: 
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It is true that  
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which means that point  mm  ,  is the global minimum of function  ,f , when 11  r . 
If parameter   is fixed, then 
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It is evident that the values of   and   that provide the global minimum of variance 
 P2  are 0 , 0 . 

Let us fix parameters  and  with values used in the example above, particularly 
19,0 , 1 .  Let the distribution law of ice thickness and strength here remains 

lognormal with statistical characteristics considered in the previous chapter, as well as 
structure width remains the same. The dependence of the mathematical estimation  MP  of 
pressure (2) and its standard deviation  P  on the parameter r  is presented in Figure 3. Here 
r is related with the h and R correlation coefficient  according to the equation (9). From this 
figure we can see the feature mentioned above: MP and  P  decrease when r increases (and 
 as well). This happens because of the negative power 19,0  of factor h, and vice versa, 
the negative correlation between h and R increases the mean and variance of pressure P.  

From this we can make outcome that formula (2) is not intended for using correlated 
parameters. 

 
Figure 3. Dependence of MP (solid line, left axis) and  P  (dashed line, right axis) on 

parameter r, when 19.0  and 1 . 
 

We should note that some empiric formulas offered for pressure (Loset et al. 1999) 
contain factor h in a positive power as well as factor R, and for those models the positive 
correlation of lognormally distributed h and R will increase the mean and variance of pressure 
p. 

 
OUTCOMES 

Having the reliable and verified model which connects ice regime parameters and ice 
pressure is very important for easy probabilistic modeling of this pressure as well as reliable 
estimating of the specific bound exceeding probability.  

Design formula provided by standard ISO 19906 (equation A.8.21) allows to estimate 
maximum effective pressure on the structure. It can be used for a stochastic model by 



substituting corresponding random variables instead of fixed maximum ice thickness and ice 
compressive strength values. 

When these ice regime parameters are supposed to have rather common lognormal 
distribution, the distribution law of pressure is also lognormal and he model has some 
profitable properties, like easy quantile calculating.  

The influence of introduced correlation between ice thickness and ice compressive 
strength is investigated in the paper. The outcome was made that ISO 19906 model of global 
effective pressure is not intended for using correlated ice regime parameters because of 
contadictory behaviour of pressure statistical properties in this case.  

However, a number of other design formulas exist, which are free of the named feature. 
The theorem of power coefficients, which provide minimum values for pressure mean 

in the case of ice regime parameters lognormal distribution is formulated and proved.  
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