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ABSTRACT
We study the failure of an initially intact ice sheet against an inclined structure, where the
most prevalent forces on the ice sheet are vertical. We describe the resulting vertical bending
with  the  Reissner-Mindlin  first-order  shear  deformation  theory,  implemented  in  a  three-
dimensional in-house finite element code. When certain stress criteria are met, the plate frac-
tures according to a phantom node algorithm. The simulated fracture process is validated with
analytical models and field experiments described in the literature. Focus is laid on cantilever
beam tests and vertical breakthrough tests. Simulations agree with the literature data in both
the  distribution  of  stresses  leading  to  fracture  and  the  most  common  resulting  fracture
patterns. In future, our aim is to couple the finite element code with an existing discrete ele-
ment code to simulate ice plate failure against a structure and the subsequent pile-up process.

INTRODUCTION

When an initially intact ice cover moves against an inclined structure, it fails by fragmenting
into discrete ice blocks which then accumulate in front of the structure and form an increa-
singly large rubble pile.  Understanding this  fragmentation process and predicting the sub-
sequent  ice  load  on  the  structure  are  important  for  the  design  and  operation  of  marine
structures in ice-covered waters.
Ice failure in ice pile-up processes has previously been simulated with the discrete element
method  (DEM)  by  e.g.  Hopkins  (1997)  and  Paavilainen  et  al.  (2009).  In  addition,  e.g.
Määttänen and Hoikkanen (1990) have used the finite element method (FEM) to determine
the ice forces on structures. The most promising approach, however, seems to be a combi-
nation of both methods (FEM-DEM), as done by e.g. Munjiza (2004) or Paavilainen (2013). 
The latter  has conducted 2D FEM-DEM simulations  on ice rubble formations,  where the
original ice sheet is modeled with FEM Timoshenko beams and the broken off fracture pieces
are  modeled  using  DEM.  The  work  presented  here  is  aimed  at  implementing  the  3D
continuation of the Paavilainen model, and we will present the model at its current stage,
together with its momentary capabilities and preliminary simulation results. 
This paper focuses entirely on the finite element modeling of the intact ice sheet subjected to
a bending load. More specifically,  for the purpose of this paper we will ignore horizontal
loading of the ice sheet, rather the stationary ice sheet is deformed by constant vertical loads.
At high stress levels the ice sheet starts to fail according to stress-based failure criteria. 
In the following section we will describe the physical settings that we are going to focus on
throughout this paper, then continue with the mathematical model underlying the numerical
simulations in section 3. In section 4, we present some preliminary simulations and we will
conclude the paper with an outlook on the next immediate steps of extending the model. 
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SETTING AND DEFINITIONS

We consider an isotropic and homogeneous, stationary ice plate of width W, length L, and
height h, that is floating on water modeled as an elastic foundation with modulus k. The plate
is subjected to a constant vertical downward force P acting over a circular area with radius r.
The response of the plate is considered to be quasi-static.
For validation we chose two well defined geometries, a simply supported square plate and a
cantilever test beam (see figure 1). The plate is 20 m × 20 m large and 0.5 m thick, and is
loaded centrally with a total force of 1 kN across an area of radius 2 m. All four edges are
simply supported, i.e. vertical displacements are zero, but the edges are free to rotate. The
cantilever beam is chosen to be 4.5 m in length, 0.5 m in width and 0.5 m in thickness. One
end is clamped over a length of 0.5 m in order to approximate the setup in actual field tests,
while the other is loaded with a force of 9.0 kN that is distributed over a semi-circular area of
0.05 m radius. Material parameters are characteristic for sea ice (see table 1).
To initiate cracking, total loads are set to 100 kN and 9.0 kN, respectively. In both cases, the
plates are initially intact and fail in bending due to the imposed high stress levels. Increasing
the applied loads further  leads to  crack propagation up to  the point  where the plates  fail
entirely.

Figure  1.  General  settings.  Left:  A square  plate  is  resting  on  an  elastic  foundation  and
subjected to a vertical force P which is applied over a circular area of radius r. The dimensions
of the plate are length L, width W, and thickness h, and all four edges are simply supported.
Right:  A narrow plate  resembling a cantilever  beam is subjected to a force P on a semi-
circular area at one end and clamped at the opposite end. 

Table 1. Material parameters for the ice plate.
Material parameter Symbol Value
Young's modulus E 5.0 GPa

Poisson's ratio ν 0.35
Shear correction factor κ 5/6

Modulus of the elastic foundation k 10055 N/m3

Tensional strength s_f 0.6 MPa
Shear strength t_f 0.6 MPa

Compressive strength f_c 3.0 MPa

MODEL

We use a first-order shear deformation theory and linear elasticity to describe deformations of
the homogeneous and isotropic plate before fracture. Cracking is purely stress-induced; the
model presented here is quasi-static and ignores the effects of strain and strain history on the
fracture process.



The shear deformation theory we employ is the Reissner-Mindlin theory (see e.g. Reddy 2007
or Szilard 2004) that includes the effect of transverse shear in bending deformations. Cross
sections that are originally normal to the mid-plane of the plate may rotate with respect to it
during  deformation.  Therefore  three  degrees  of  freedom  are  necessary  to  describe  the
deformation  of  the  plate:  vertical  displacement  w  of  the  mid-plane  z=0 ,  and  the  two

rotations  ϕ x=
∂u
∂ z

 and  ϕ y=
∂ v
∂ z

 of  the  transverse  normal  about  the  y -  and  x -axes,

respectively. The two horizontal displacements  u  and v  are zero on the mid-plane for the
static bending model employed here. 
Our FEM model is based on Ferreira (2009) and Reddy (2007). Displacements d  are found
by solving the linear system of equations

K d= f , (1)

where K  is the stiffness matrix and f  the force vector. Both are computed with the help of
Gaussian quadrature, but we use reduced integration for the shear contribution of the stiffness
matrix in order to avoid shear locking. Strains and stresses of the plate are obtained from the
calculated displacements during post-processing.
We use an unstructured mesh of T3 elements that has been generated with GMSH (Geuzaine
2009). Each node is assigned three degrees of freedom  (w ,ϕ x ,ϕ y ) .  The total number of
elements is 1000 for the square plate and 516 for the cantilever beam. It should be noted that
even  though  the  mesh  itself  is  2D,  displacements  can  be  recovered  for  the  entire  three-
dimensional plate.
Failure in the plate occurs according to the criterion suggested by Schreyer et al. (2006) which
employs a decohesion function based on the stress state of the plate material. At this stage, we
do not yet include cohesiveness of cracks (Hillerborg 1976), effectively inducing a catastro-
phic failure through the entire thickness (not length) of the plate as soon as a crack is initiated
at one location. 
The decohesion function is defined as (Schreyer 2006):
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with the stresses  σ=(σnn σnt
σnt σ tt ) , the shear strength τsf , the tensional strength τnf  and the

compressive strength f c .
Only stress states that result in F≤0  are admissible. The state F=0  indicates the onset of
fracture or unloading. In the case F<0 , the material is intact or the crack is not propagating.  
During simulation, the maximum of  F  is calculated for a given load P. If it  is found to
produce  a  stress  state  with  F<0 ,  the  load  is  increased  and  the  displacements  and
corresponding stress state recalculated until max (F )=0  is reached. 
The node at which this maximum occurs is duplicated and both the original and the new node
are assigned to elements on either side of the crack. In order to prevent the plate from failing
catastrophically, only one or two nodes at a time may fail. That is, if the load P is found to be
too high, it is reduced by half of the load increment of the previous step. Then f  and K  are
updated, together with the corresponding displacements and stresses. In other words, we use a
bisecting algorithm for finding the load that cracks the plate at either one or two nodes.
The direction of the crack is determined from the critical angle found in Schreyer (2009) and
can be either at an angle of θc=0  or θc=±α  to the principal direction, where α  is given by
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The element boundary ending at the cracking node that has its angle θ  closest to either one of
the critical angles θc  will be the one along which the crack propagates.

PRELIMINARY RESULTS

1. Square plate

Our  square  plate  setup  resembles  that  of  a  loaded  floating  ice  sheet  before  vertical
breakthrough. Due to its importance, the deformation due to vertical loading has been studied
widely, and analytical solutions for the vertical displacement w of a simply supported plate
are readily available, e.g. from Szilard (2004):

w (x , y )=∑m=1

∞

∑n=1

∞ Pmnsin (mπ x /L)sin(nπ y /W )

Dπ
4
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)]

2
+k

(4)

with the Fourier coefficients

Pmn=
4 P
W L

sin
mπ x p
L

sin
nπ y p
W

. (5)

The circular  load P is  composed of point  loads at  the individual  points  (x p , y p)  equally
distributed over the circular cross section.
For the square plate, the maximum deflection predicted by equations (4) and (5)  for a load of
1 kN is 69.7 μm. Both our FEM model and a comparable COMSOL agree remarkably well
with both magnitude and shape of the deflection, as can be seen in figure 2.
If the load is increased to 9 kN, the deflection increases to 7.0 mm and cracks start forming at
the bottom surface of the plate, as shown in figure  Error: Reference source not found. The
first to appear is an approximately straight crack, which is soon joined by a second crack
almost perpendicular to the first. A further increase in the load leads to the formation of cracks
at various angles that continue growing until the edge of the plate is reached. This cracking
pattern  mimics  the  early  stages  of  an  ice  sheet  breakthrough  found  in  numerous  field
observations (Beltaos 2001, Masterson 2009).
While the load that leads to the first crack is found to be 100 kN, it has to increase gradually
in order to propagate the crack. When the load reaches almost three times its original value,
the crack reaches the edge of the simulated plate. For comparison, breakthrough in the field
may occur with loads as low as 350h2  = 87 kN, but typically is expected for 440 kN (Sodhi
1995). Note that our model plate is too small to exhibit  circumferential  cracks and actual
breakthrough.
 

Figure  2.Comparison  between  the  model
described in this paper, a COMSOL model
and the corresponding analytical  solution.
For  all  three  models  a  plate  of
20 m × 20 m × 0.5 m  is  resting  on  an
elastic foundation and a total force of 1kN
is applied over a circular cross section of
2 m  radius  at  the  center  of  the  plate.
Predicted deflections are 69.5 μm, 70.7 μm,
and 69.7 μm, respectively.



Figure 3. Square plate loaded vertically (into the plane of the sketch). The grey circle marks
the area over which the applied force is spread. Red lines mark nodes and element boundaries
that have been duplicated, that is they represent position and direction of cracks. All cracks
are formed at the bottom surface of the plate. Applied loads are 120 kN (top left), 150 kN (top
right), 245 kN (bottom left), and 285 kN (bottom right), respectively.

Figure  4.  Load  history  of  the
square plate versus total length of
all cracks combined, measured in
the  number  of  nodes  that  have
been  duplicated.  The  first  crack
appears at 100 kN; the first crack
reaches  the  edge  of  the  plate  at
285 kN.

2. Cantilever Beam

We compare the cantilever beam simulations with analytical solutions, COMSOL simulations
and field observations. In our simulations, the maximum deflection at the end of the beam
amounts to 2.6 mm and the highest stresses of 2.4 MPa are on the horizontal surfaces at some
distance from the clamping. 



Figure  5.  Tensional  stress  distribution
(σxx) in cantilever test beam. Downward
deflection  amounts  to  2.6 mm.  Maxi-
mum  of  tensional  stress  (2.4 MPa)  is
located at the top of the beam at some
distance  from  the  clamping,  which  is
consistent  with  the  COMSOL model.
Shearing becomes apparent due to the
rotation of the end surface of the beam
at x = 4.5 m.

The analytical solution predicts the following vertical deflection at the end of the beam (Ervik
2013):

w (L)=
2Fβ

k
sinh 2β L−sin 2β L

cosh2
βL+cos2

βL
 = 5.3 mm

and a stress at the crack root of
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3
.

The COMSOL model predicts a similar deflection of 3.6 mm but a lower stress of 1 MPa. 
Considering a  reasonable  flexural  strength similar  to  the  tensile  strength of  0.6 MPa (see
table 1),  one should expect  from Marchenko et  al.  (2014) that  the  beam can withstand a
maximum of about 3 kN, according to the following equation:

F max=
σbW h

2

6 L
. 

However, our model requires a force of 9 kN to initiate cracking. Nevertheless, the deflection
and stress distribution agree well qualitatively. This is particularly reflected by the fact that
the cracks in our model initiate at a small distance from the clamping at the upper surface of
the beam, and are directed across the beam.

Figure  6.  Crack initiation for the cantilever  test  beam at the top surface in  the region of
maximal tensional stress. The crack crosses the beam almost in a straight line. Location of the
vertical load is marked by the grey semi-circular area at the right end of the beam.



CONCLUSION AND OUTLOOK

We  have  presented  an  FEM  plate  bending  model  that  describes  an  initially  intact  plate
developing cracks when stress levels are high. The employed model includes first order shear
deformation and allows for fracture due to tension, compression or shear. The unstructured T3
mesh  yields  very good qualitative  and  quantitative  agreement  for  the  plate  bending  case
presented.  For  the  cantilever  beam,  quantitative  agreement  depends  on  the  means  of
comparison.  In  both  cases  qualitative  agreement  of  the  cracking  process  with  empirical
findings is very promising.
The presented FEM model will be combined with an existing 3D DEM solver that will handle
the pieces broken off the original plate. Before this, we will incorporate the cohesive theory
and thus add the third dimension into our cracking model by allowing different levels of
cohesion throughout the thickness of the plate. This will also require an adaptation of the
current 2D fracture criterion. Later, we will add dynamical effects to our model and include
lateral movement.
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