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ABSTRACT 

Ice sheet failure mechanism is highly complex and has multiple modes of failure (crushing, 

flexural failure, radial and circumferential cracking, spalling and creep) which can occur 

simultaneously in ice-structure interaction. The capability of the Cohesive Element Method 

(CEM) to simulate realistic ice fracture phenomenon makes it a promising numerical method 

which can be developed into a useful numerical tool for design of offshore structures 

subjected to ice actions. 

 

In recent years, there has been greater interest and development of the CEM framework for 

ice-structure interactions (e.g. Gu ̈rtner et al., 2009; Konuk et al., 2009; Gu ̈rtner et al., 2010; 

Hilding et al., 2011; Liu and Wu, 2012). Most of the efforts have been dedicated to the 

demonstration of ice fracture and crushing in the event of an ice-structure interaction. 

However, there are a number of limitations and challenges which have not been fully 

addressed and these include the use of a uniform mesh with hexahedral elements, lack of 

convergence with mesh refinement, large variation in the properties of the cohesive elements, 

as well as assumptions made in model implementation.  

 

In this paper, a comprehensive survey of the literature on CEM applied to ice-structure 

interaction is presented. The advancement of the CEM till date is discussed and its limitations 

are exemplified with simulations carried out in this study. Approaches to overcome some of 

these challenges are proposed and supported by simulation results. 

 

 

INTRODUCTION 

Large scale experimental testing of in-situ sea ice is highly challenging and expensive. This 

limitation can be overcome by numerical tests with realistic modelling. In the modelling of 

ice-structure interaction with features that span over orders of magnitude from the small ice 

fragments to the semi-infinite ice sheets, this will entail computationally intensive 

simulations. However, with advancing computation and development of numerical methods, 

it becomes more feasible to use numerical tests to predict the response of ice-structure 

interactions.  

 

The failure mechanism of sheet ice can be highly complex and involves multiple modes of 

failure (crushing, flexural failure, radial and circumferential cracking, spalling and creep) 

which can occur simultaneously in ice-structure interaction. In order to simulate the fracturing 
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of ice, the different numerical approaches range from the basic finite element method (FEM) 

approach which incorporates element erosion, to the discrete element method (DEM) which 

incorporates cohesive contact between the particles and the extended finite element method 

(XFEM) which promises mesh free simulation of arbitrary cracks (Lu et al., 2012b). 

Alternative hybrid methods include the Particle-In-Cell method (PIC) in which the particles 

are advected in a Lagrangian manner while their momentum equations are solved over an 

Eulerian grid (Barker and Sayed, 2013). 

 

The drawback of conventional FEM with element erosion is the violation of conservation 

laws as the removal of elements also removes mass and energy from the system. Furthermore, 

the absence of ice fragments does not allow for the interaction between the ice rubbles and the 

ice sheet/structure to be explicitly simulated. While DEM seems to be mesh-free, the tracking 

of individual particles requires extreme computational efforts. In addition, cohesive contact 

properties between the particles need to be artificially calibrated. XFEM allows for the crack 

propagation to be independent of mesh and conserves mass. Similar to traditional FEM, it is 

unable to simulate the rubbling effect of crushed ice fragments. Although PIC has been used 

to study broken ice cover forces on structures and build up effect, the disintegration of ice 

cover into ice floes does not explicitly follow fracture theory. In the simulation of ice crushing 

when it interacts with a structure, the process is governed by fracture and plasticity, which 

will currently favour the FEM over the other alternative approaches. 

 

The cohesive element method (CEM) is a blend between FEM and DEM which improves on 

their individual drawbacks. Cohesive elements with vanishing thickness are inserted between 

the bulk elements. The constitutive relations for the volume elements and the cohesive 

elements are different; the volume element follows the properties of the bulk material while 

fractures are modelled by the cohesive elements with its separation following the traction-

separation law. Conservation laws are satisfied as only near-zero thickness cohesive elements 

are removed. Multiple fractures can be simulated by prescribing cohesive elements at all 

potential crack surfaces. However, the propagation of the cracks becomes dependent on both 

mesh size and geometry, leading to large variations in the specifications of cohesive element 

properties by researchers. The challenges in implementing the CEM and approaches to 

overcome them will be discussed in subsequent sections. 

 

 

COHESIVE ELEMENT METHOD 

The classical linear elastic fracture mechanics (LEFM) theory is strictly applicable when the 

size of the fracture process zone (FPZ) is small compared to the relevant dimensions of the 

specimen. In many quasi-brittle materials where the FPZ cannot be lumped into the crack tip, 

the FPZ can be described by simplified model of a fictitious crack that transfers stress from 

one crack face to the other, such as the cohesive zone model (CZM). The FPZ accounts for 

the nonlinear behaviour of the material ahead of the tip of a pre-existent crack and these 

models made it possible to relieve the crack tip singularity. 

 

The cohesive zone model (CZM) was pioneered by Barenblatt (1959, 1962) and Dugdale 

(1960) for applications in the fracture of brittle and ductile materials respectively. Crack 

initiation and propagation in quasi-brittle concrete was implemented in the finite element 

framework by Hillerborg et al. (1976) with the use of CZM by adopting fracture mechanics 

theories such as the stress intensity factor and energy balance approach. The implementation 

of the CZM into numerical analysis has been commonly referred to as the Cohesive Element 

Method (CEM) which entails the insertion of cohesive inter-elements between bulk elements 



in the conventional finite element mesh. This is achieved by duplicating the nodes along all 

internal mesh boundaries as shown in Figure 1. 

 

 
Figure 1. Insertion of cohesive element between bulk elements. 

 

These cohesive elements follow a traction-separation law which describes the material 

separation process and provides a relation between crack surface traction and crack surface 

opening displacement. Upon reaching the separation limit, the cohesive elements fail and are 

removed, thus explicitly simulating the fracture process zone (FPZ) which is confined along 

the finite element boundaries. The cohesive element does not represent any physical material 

but describes the cohesive forces when fracture occurs. The stresses are finite everywhere in 

the vicinity of the crack tip and there is no need to solve for stress-singularities. Thus, this 

model is based on the robust mathematical framework of conventional FEM and relies on the 

cohesive elements for crack propagation. The cohesive elements have negligible mass and 

volume as compared to the bulk elements and hence, the erosion of the cohesive elements 

does not violate the conservation law, as opposed to bulk element erosion method in 

traditional FEM. 

 

 

IMPLEMENTATION OF CEM IN ICE-STRUCTURE INTERACTION 

CEM methodology was adopted by Gu ̈rtner et al. (2009) in the modelling of ice-structure 

interaction and research interest in this area has gained momentum in the latter years (Hilding 

et al., 2011). The development of a basic CEM model in LS-DYNA can be referenced from a 

few main papers: "Numerical modelling of a full scale ice event" (Gu ̈rtner et al., 2010), 

"Simulation of ice action loads on offshore structures" (Hilding et al., 2011) and "Numerical 

simulation of the ice-structure interaction in LS-DYNA" (Daiyan and Sand, 2011). In these 

three papers, the ice-structure interaction is that of a 40 x 40 x 0.69 m ice-sheet drifting at 

0.15 m/s and impacting the Norströmsgrund lighthouse structure which is of a cylindrical 

form with diameter of 7.2 m. The Norströmsgrund lighthouse is located in the Gulf of Bothnia 

near Luleå, Sweden, and full-scale measurements of ice forces have been carried out during 

the winters of 1999 to 2003 (Kärnä and Jochmann, 2003). The physical measurements of 

structure loading as shown in Figure 2 can be referenced from Hilding et al. (2012). Figure 

2(a) shows the accumulation of ice fragments during a continuous crushing event and Figure 

2(b) shows the corresponding measured forces exerted on the lighthouse. 

 

 



 
Figure 2. Physical measurements and ice failure at Norströmsgrund lighthouse  

(Hilding et al., 2012). 

 

In this study, the interaction zone is assumed to be 20 x 20 m with bulk element size of about 

0.2 x 0.2 x 0.13 m to reduce the computation time. Cohesive elements with vanishing 

thickness are inserted between the bulk elements as described in the preceding section. Figure 

3 illustrates how the cohesive elements are used to connect the bulk elements to each other. 

The material properties of the bulk elements and cohesive elements are referenced from 

Gürtner et al. (2010) and Hilding et al. (2012) and shown in Table 1. Figure 4 shows the 

typical full model at initial timestep where the ice sheet advances towards the 7.2 m diameter 

cylinder at a constant velocity of 0.15 m/s.  

 

 
Figure 3. The ice sheet is modelled with a combination of  

a) bulk elements, and b) cohesive elements. 

 

a) b) 
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Table 1. Material properties (Gu ̈rtner et al., 2010; Hilding et al., 2012). 

Bulk elements Cohesive elements 

  
E  = 5 GPa 

ρ  = 910 kg/m
3
 

ν  = 0.3 

σy  = 2.0 MPa 

 

GIC   = 5200 J/m
2
 

GIIC  = 5200 J/m
2
 

λ1 = 0.02 (vert. & hori.) 

λ2 = 0.55 (vert.) 

λ2 = 0.45 (hori.) 

Tmax, tensile = 1.0 MPa (vert.) 

Tmax, shear   = 1.0 MPa (vert.) 

Tmax, tensile = 1.1 MPa (hori.) 

Tmax, shear   = 1.1 MPa (hori.) 

 

 

 
Figure 4. Typical full model at initial timestep. 

 

 

CURRENT CHALLENGES 

Limitations of a Uniform Mesh with Hexahedral Elements 

In a uniform mesh with hexahedral elements discretized in the global x, y, z axis as illustrated 

in Figure 4, the cracks can only propagate vertically or laterally. Attempts were made to 

model the anisotropic behaviour in columnar ice by specifying different properties for the 

cohesive zone elements in the vertical and horizontal planes (Gu ̈rtner et al., 2009; Konuk et 

al., 2009; Gürtner et al., 2010; Hilding et al., 2011; Liu and Wu, 2012). While the use of a 

uniform hexahedral mesh might be the most convenient approach to model fragmentation of a 

large number of particles using cohesive elements, it constrains the potential cracks to 

propagate only along these orthogonal planes as shown in Figure 5. To reduce the constraints 

on the possible fracture paths, Lu et al. (2012a) had tried to study a crossed triangular mesh 

pattern which would allow for both diagonal and orthogonal cracks to form. However, it was 

reported that the mean load increased with mesh refinement and convergence was yet to be 

7.2 m 

20 m 20 m 

v = 0.15 m/s 



achieved. Furthermore, it should be noted that the crossed triangular mesh pattern studied by 

Lu et al. makes use of triangular block elements which will facilitate diagonal cracking in the 

horizontal plane but discretization along the vertical depth remains the same as the hexahedral 

mesh which only allows for cracks to propagate in the x-y plane. In comparison, a fully 

tetrahedral mesh which would allow for diagonal crack paths in both vertical and horizontal 

planes will be explored in the subsequent section of this paper. 

 

 

 
Figure 5. a) Rubbled ice in front of lighthouse is removed for illustration, and  

b) Close up of surface interaction. 

 

 

Lack of Convergence with Mesh Refinement 

The placing of cohesive elements on every possible interface is by far the most developed 

methodology to handle many simultaneous cracks such as fragmentation problems. In order 

for the numerically simulated crack path to follow closely to the true crack path, a sufficiently 

fine mesh could be used to enrich the set of potential paths that the crack can follow. 

However, a convergence proof for the cohesive finite elements as the mesh size tends to 0 is 

still lacking in literature (Papoulia et al., 2003). 

 

Hilding et al. (2012) suggests a homogenization approach in an attempt to capture the 

macroscopic effect of ice crushing without the need to model all the small cracks. Using a 

representative volume element, the amount of internal cracks is assumed to be proportional to 

the amount of deformation. The average effects of the cracks are then expressed on the 

macroscopic level by subjecting the bulk elements to softening following a yield curve as 

shown in Table 1 above. This material model is size independent since the energy for this 

material model scales with Length
3
 yet physically captures the plastic energy (which scales 

with Length
3
) and the fracture energy (which scales with Length

2
). The purpose of the bulk 

and cohesive elements are not clearly differentiated here as both the bulk and cohesive 

elements account for fracture. Nevertheless, this material model is considered as a simulation 

case for comparison and the results are presented below. 

 

The effects of mesh refinement are studied by simulating the ice sheet using three different 

mesh sizes while keeping all other parameters constant. Figure 6 shows the simulation results 

at time of 30 seconds after initial impact. The ice sheet in Case 1 is meshed using element size 

of 0.2 x 0.2 x 0.138 m, while Case 2 uses element size of 0.4 x 0.4 x 0.138 m and Case 3 uses 

element size of 0.8 x 0.8 x 0.138 m. The vertical height of the element is maintained 

throughout so that there are 5 elements across the thickness of the ice sheet. The 

computational times for the various models are as follows: Case 1 ~ 152 hours with 8 CPUs, 

Case 2 ~ 36 hours with 8 CPUs, Case 3 ~ 18 hours with 4 CPUs. 

a) b) 



 
Figure 6. Ice-structure interaction at 30 seconds after initial impact for a) Case 1: Fine mesh, 

b) Case 2: Medium mesh, and c) Case 3: Coarse mesh. 

 

For a constant driving velocity of 0.15 m/s for the ice sheet, the full width of the structure 

would be interacting with the ice sheet after 24 s. The total horizontal force experienced by 

the structure after 24 s is output and shown in Figure 7. The average force and the standard 

deviation for all the three cases are tabulated in Table 2 for comparison. Case 3 with the 

coarse mesh shows the lowest average force of 1.61 MN but with the largest standard 

deviation of 0.876 MN. Case 2 with the medium mesh shows an average force of 2.22 MN 

with a smaller fluctuation of 0.487 MN. Case 1 with the finest mesh shows an average force 

of 3.49 MN with a standard deviation of 0.119 MN. Clearly, the average force increases with 

refinement in mesh size and there is no convergence in the predicted forces for the different 

mesh sizes. It should be noted that the dispersion of the force, characterized by the coefficient 

of variation of the force, is highly dependent on the fragmentation process (fragment size, rate 

of clearing of fragments from crushed zone); the value varies from 0.119 for the fine mesh to 

0.544 for the coarse mesh, while the value from the physical measurements is 0.18.  

 

 
Figure 7. Ice-structure interaction forces as the ice rubbles against the lighthouse. 

a) b) 

c) 



Table 2. Prediction of average force using different mesh sizes 

 Case 1: Fine mesh 

(MN) 

Case 2: Medium mesh 

(MN) 

Case 3: Coarse mesh 

(MN) 

Fmean 3.49 2.22 1.61 

Fstd 0.415 0.487 0.876 

CoV = Fstd /Fmean  0.119 0.219 0.544 

 

Figure 8 shows the comparison of the internal energy of bulk elements for the three different 

mesh sizes. The rate of bulk energy dissipation increases with a coarsening in mesh size, 

which shows the mesh dependence of the energy dissipation. As the elements get larger, the 

fragments are harder to be freed from the crushing zone which resulted in a higher rate of 

dissipation of bulk energy. The same mesh dependency issue is observed for the rate of 

cohesive energy dissipation. Both the bulk and cohesive energies show strong dependence on 

mesh size which has not been resolved. 

 

 
Figure 8. Internal energy of bulk elements for models using a) Case 1: Fine mesh, 

b) Case 2: Medium mesh, and c) Case 3: Coarse mesh. 

 

The three cases above have been based on the same constitutive model and parameters for the 

bulk elements and the cohesive elements despite the change in mesh size. It is clearly shown 

that both the yield curve for the bulk elements and the traction separation law for the cohesive 

elements are dependent on mesh size and hence should be scaled adequately to eliminate 

mesh dependency. 

 

 

Large Variation in the Properties of the Cohesive Elements 

The traction separation law that describes the behaviour of the cohesive elements under 

tensile and shear stresses has been shown above in Table 1. For a linear softening model, the 

traction separation law can be defined by the parameters E, Tmax and GC. For a plastic 

softening model, there is a need to define two non-dimensional parameters 1 and 2 which 

characterize the plastic region. The stiffness of the cohesive elements, E, is commonly treated 

as a penalty parameter to ensure that the overall stiffness of the ice specimen is not reduced 

much by the presence of the cohesive elements with finite stiffness. The cohesive strength, 

Tmax, is sometimes treated as a penalty parameter if the cohesive length is sufficiently small 

such that only the fracture energy matters. Table 3 illustrates the large variations in the 

specifications of cohesive element properties assumed by the respective authors during model 

implementation.  

 

It can be observed that the cohesive strength differs by more than one order of magnitude, 

ranging from 0.065 MPa to 1.0 MPa. The fracture energy that was determined experimentally 

in the lab ranges around 1−2 J/m
2
 (Timco and Weeks, 2010) and it differs by more than one 

order of magnitude as compared to the values shown in Table 3, which ranges around 

b) a) c) 



52−5200 J/m
2
. These values are often adopted to match the load predictions measured in the 

field. Even though Dempsey et al. (2012) reported values between 23−47 J/m
2
, the much 

larger value is believed to be due to the slower rate of loading in the field testing of large 

specimens which leads to larger creep. 

 

Table 3. Bulk and cohesive element properties. 
Paper Title / Authors / Year Bulk element Bulk element 

properties 

Traction-

separation law 

Cohesive element 

properties 

Numerical simulation of ice 

action to a lighthouse /  

Gu ̈rtner, Bjerkås, Kühnlein, 

Jochmann and Konuk /  

2009 

8-nodes brick 

0.17x0.4x0.4 m 

von Mises yield 

E = 1000 GPa 

 = 910 kg/m
3
 

 = 0.3 

y = 0.0007 MPa 

Plastic 

softening 

GIC  = 20 J/m
2
 (vert.) 

GIIC = 28 J/m
2
 (vert.) 

GIC  = 52 J/m
2
 (hori.) 

GIIC = 52 J/m
2
 (hori.) 

λ1 = 0.08 (vert.) 

λ2 = 0.45 (vert.) 

λ1 = 0.10 (hori.) 

λ2 = 0.55 (hori.) 

Study of Dynamic Ice and 

Cylindrical Structure Interaction 

by the Cohesive Element 

Method /  

Konuk, Gürtner and Yu /  

2009 

8-nodes brick von Mises yield 

E = 5.0 GPa 

 = 910 kg/m
3
 

y = 2.0 MPa 

Linear 

softening 

Tmax = 0.5 MPa (vert.) 

Tmax = 0.6 MPa (hori.) 

E// = 50 GPa/m (vert.) 

E = 5 GPa/m (vert.) 

E// = 50 GPa/m (hori.) 

E = 5 GPa/m (hori.) 

Numerical modelling of a full 

scale ice event /  

Gu ̈rtner, Bjerkås, Forsberg and 

Hilding /  

2010 

8-nodes brick 

0.13x0.2x0.2 m 

von Mises yield 

E = 5.0 GPa 

 = 0.3 

y = 1.5 MPa 

Plastic 

softening 

Tmax = 1.0 MPa (vert.) 

Tmax = 1.1 MPa (hori.) 

GC = 5200 J/m
2
 

λ1 = 0.02 

λ2 = 0.55 (vert.) 

λ2 = 0.45 (hori.) 

u
c
 = 6.8 mm (vert.) 

u
c
 = 7.1 mm (hori.) 

Simulation of ice action loads on 

offshore structures /  

Hilding, Forsberg and Gu ̈rtner /  

2011 

8-nodes brick 

0.13x0.2x0.2 m 

von Mises yield 

E = 5.0 GPa 

 = 910 kg/m
3
 

 = 0.3 

y = 2.0 MPa 

Plastic 

softening 

Tmax = 1.0 MPa (vert.) 

Tmax = 1.1 MPa (hori.) 

GC = 5200 J/m
2
 

Numerical simulation for ice-

truss offshore structure 

interactions with cohesive zone 

model /  

Liu and Wu /  

2012 

8-nodes brick von Mises yield 

E = 5.0 GPa 

 = 910 kg/m
3
 

y = 2.0 MPa 

Plastic 

softening 

Tmax = 0.065 MPa (vert.) 

Tmax = 0.071 MPa (hori.) 

GIC = 20 J/m
2
 (vert.) 

GIIC = 28 J/m
2
 (vert.) 

GIC = 52 J/m
2
 (hori.) 

GIIC = 52 J/m
2
 (hori.) 

u
c
 = 0.095 mm (vert.) 

u
c
 = 0.200 mm (hori.) 



PROPOSED SOLUTIONS TO CHALLENGES 

Properties of the Cohesive Elements 

The formulation of interface elements with non-zero thickness requires a finite stiffness prior 

to the onset of cracking, thus giving rise to deformations in the interface before crack 

initiation. Often, these unwanted deformations are largely suppressed by choosing a very high 

arbitrary stiffness in the interface for the pre-cracking phase. Depending on the chosen spatial 

integration scheme, this high dummy stiffness can lead to numerical instability for explicit 

time stepping schemes and spurious traction oscillations in the pre-cracking phase, which may 

cause erroneous load predictions. While the results presented in this paper are based on 

interface elements with finite thickness, numerical studies are also being carried out with the 

use of zero thickness interface elements and the results will be presented in the conference. 

The necessity of using zero thickness interface elements in this study is described in greater 

detail in the next section. 

 

In the quasi-static loading, the specimen is in static equilibrium during the loading process 

and cracks will initiate at the weaker planes which will then lead to subsequent failure along 

these weak planes. For anisotropic materials, the weaker planes will potentially govern the 

failure and would need to be explicitly accounted for in order to simulate the failures along 

the weaker planes. At faster rates of loading, the stress waves could potentially exceed the 

strength and energy limits of the material with no regards to the strong or weak planes, 

leading to fragmentation of a large number of small particles, which was commonly observed 

for the crushing of ice during ice-structure interaction. For such behaviour, it suffices to use 

effective traction and separation parameters to take into account the anisotropy and mode-

mixity without the need to model these effects explicitly. In other words, the complex fracture 

mechanism could be lumped into effective properties that account for these effects. If the size 

of the elements is representative of the size of the fragments, the effective properties of the 

cohesive elements represent the average energy of all physical cracks (regardless of the mode 

of fracture) at the meso-level.  

 

Since the fragmentation of ice will necessitate complete separation of the cohesive elements 

and complete dissipation of the fracture energy, the fracture energy will be one important 

parameter that needs to be estimated as accurately as possible. Even though the yield strength 

of the elements does not vary much (15−20MPa), the bulk energy dissipation is dependent on 

the fracture of the surrounding cohesive elements and hence indirectly dependent on the 

cohesive element properties. A sensitivity study on the cohesive strength and fracture energy 

should be carried out to ascertain the importance of these two parameters in ice-crushing 

failure during ice-structure interaction. Scaling laws should be subsequently developed such 

that the physical properties of the ice fragments can be scaled up correctly to the larger mesh 

sizes used in simulations, thus allowing for more efficient simulations with the cohesive 

element method. 

 

 

Resolving Mesh Dependency 

The mesh dependency with the use of CEM is an outstanding problem that has yet to be 

resolved. One approach for addressing mesh dependency of crack propagation is to employ 

very highly refined meshes (Arias et al., 2007). However, mesh refinement increases cohesive 

energy dissipation due to increased surface area to volume ratio. On the other hand, bulk 

energy dissipation decreases with mesh refinement due to easier fragmentation of ice, leading 

to a lower accumulation of the bulk energy as shown in Figure 8. The properties of the 

cohesive and bulk elements should be properly scaled in tandem to eliminate mesh 



dependency, thus allowing for larger elements to be adopted for more efficient computations 

on ice-structure interaction. 

 

The limitations of a structured mesh with hexahedral elements have been described in the 

earlier part of this paper. It is generally agreed that an unstructured mesh produces more 

realistic fracture results (Needleman, 1990; Molinari et al., 2007). Lu et al. (2012a) tried to 

improve upon the currently popular hexahedral mesh by proposing a crossed triangular mesh 

pattern which allows diagonal crack movement in-plane but restricts vertical movement 

orthogonally. To further facilitate the formation and propagation of cracks of shear cracks in- 

and out-of-plane of the ice sheet, the ice sheet can be discretized into tetrahedral elements 

shown in Figure 9(b).  The nodes of the tetrahedral elements are also randomly perturbed as 

shown in Figure 9(c) to study the effects of irregular tetrahedral mesh and its associated 

random crack planes. The effect of the inclusion of the potential diagonal crack planes on the 

force-time and energy-time histories will be compared with the finite element model with 

hexagonal mesh to highlight the differences. The ice sheet used here for comparison of the 

different element types is smaller than the one described earlier to reduce the time for 

computation. 

 

 
Figure 9: Discretization of ice sheet with a) uniform hexahedra, b) uniform tetrahedra, and 

 c) tetrahedra with perturbed nodes. 

 

Table 10 shows the force-time histories on the structure for the different element types. The 

lowest peak force is registered for the model with the uniform hexahedral mesh. This arises 

from the very large negative sliding energy and hourglass energy that accumulate rapidly 

upon contact between the ice and structure, leading to the propagation of an unrealistically 

large energy that lowered the force. When the tetrahedral elements are used, the force-time 

histories are more comparable even though a higher peak force is registered for the uniform 

tetrahedral mesh. The perturbation of the nodes further relieves the artificial constraints 

present in the crack planes that lie in the global x-y, y-z and x-z planes. The difference is more 

obvious if we compare the internal energies of the bulk elements as shown in Figure 11. The 

"locking" of the bulk elements due to the constraint of the crack planes in the global principal 

planes leads to an accumulation of internal energy for the uniform tetrahedral mesh. 

 

 

 

 

 

 

 

 

 

 

c) b) a) 



 
Figure 10: Force-time histories of ice sheet with a) uniform hexahedra,  

b) uniform tetrahedra, and c) tetrahedra with perturbed nodes. 

 

 
Figure 11: Internal energy-time histories for ice sheet with a) uniform tetrahedra, and 

b) tetrahedra with perturbed nodes. 

 

Finally, a fully random tetrahedral mesh using Delaunay triangulation is currently being 

explored. The results for the comparison of all the different element types and their degree of 

randomness will be discussed at the conference. 

 

 

CONCLUSION 

CEM can explicitly simulate full scale simulations of ice sheets undergoing continuous 

crushing without violating the conservations laws. The structure becomes softened with 

increasing cohesive element density and hence a scaling law needs to be proposed for the 

cohesive element properties such that they correspond to the different mesh sizes. Arbitrary 

input of material properties need to be validated with experimental data, in particular full-

scale ice-structure interaction data would be preferred. The prevalent choice of hexahedral 

mesh is simple to implement but limits crack propagation to orthogonal paths. By introducing 

a tetrahedral mesh, crack propagation can possibly be simulated more realistically due to 

available diagonal paths. A more ideal discretization approach would be a random tetrahedral 

mesh using Delaunay triangulation which allows for more physical representation of ice 

fragments with random sizes. Finally, properly scaled bulk and contact properties can 

potentially improve the convergence of the simulation results and are currently being studied 

in the research group. 
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