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ABSTRACT  

 

Offshore field development, especially in the Arctic region, is a complex activity involving 

risks and uncertainties from a wide range of sources. The conventional RAMS (Reliability, 

Availability, Maintainability and Safety) analysis has been used, for a long time, as a 

performance measure of the system. Moreover, it has been applied to identify weaknesses and 

select the more reliable system. However, choosing the more reliable system does not always 

mean that less losses from its failure. The purpose of this paper is to modify and adapt a 

methodology for risk-based RAMS analysis of a production system, based on losses from 

failures, by considering the effect of the extreme cold operational conditions. The adapted 

methodology uses risk analysis as a key component for the RAMS analysis. The potential 

sources of uncertainties and risks involved in the RAMS analysis has been assessed and 

identified. Further, the losses from failures have been estimated, for case-specific design 

features, by considering the effect of operational conditions.  
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1. INTRODUCTION  

 

Exploration of new areas such as the Arctic region for more petroleum production has driven 

by an increased demand of petroleum in the world. Barents Sea is one of the Arctic areas 

where the Norwegian oil and gas industry has been focusing on the exploration and 

development of oil and gas fields. However, there are several complex challenges when the 

offshore industry expands into High North compared to the well-established practices of 

exploration and production in the Norwegian Continental Shelf (𝑁𝐶𝑆) (Homlong, 2010, 

Ayele et al., 2013). Due to Arctic operational environmental factors such as large variations in 

temperature during a short period of time, sudden wind increase and large changes in wind 

direction, icing, snow, and inadequate weather forecasting, it is expected that the uncertainty 

will be magnified and the risk involved will be much higher than North Sea (Barabadi et al., 

2009, Ayele et al., 2013, Barabadi et al., 2012). Furthermore, petroleum production activities 

in the Arctic region may face unforeseen challenges which also increase the uncertainty and 

the risk involved (Markeset, 2008, Barabadi et al., 2012). It is then important to identify and 

assess all influence factors which can affect the production performance and safety of the 
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system. Further, it is relevant to understant how the uncertainties are involved in the RAMS 

(Reliability, Availability, Maintainability and Safety) assessment process such that they can 

be taken into consideration as a decision support. 

 

For a long time, the conventional RAMS analysis has been oriented towards selecting the more 

reliable system and preoccupied with maximizing the reliability of systems (Todinov, 2007). 

However, selecting the more reliable system does not necessarily mean selecting the system 

with the smaller losses from failures (Todinov, 2007). Further, failure of a system always 

exists, and hence there might be losses associated with these failures. There is no guarantee 

that failure of the more reliable system contributes to less losses. Therefore, choosing the 

more reliable system does not always mean less losses from failures. It is then important to 

consider the losses given failures of the system and do the risk analysis based on these losses 

and combine with the uncertainty analysis to make better decisions. As a result, 𝑅𝐴𝑀𝑆 

analysis should necessarily be risk-based, that is, it should be associated with the losses from 

failures. Minimizing the overall risk profile and increasing production performance of these 

complex projects is the main objective of risk-based RAMS analysis.  

 

Risk-based approaches encourage a deeper understanding of the risks associated with the 

failures of purpose-built offshore facilities than is possible under a generic RAMS analysis. By 

analyzing case-specific design features and identifying and quantifying the unique risks 

involved, the industry can take appropriate measures to mitigate those risks. Furthermore, 

taking appropriate mitigation measures could improve system reliability and reduces losses 

from failure. The risk-based approach considering 𝑅𝐴𝑀𝑆 analysis play an important role to 

optimize the production performance by dealing with losses from failures and uncertainties. 

That is, uncertainty and risk analysis must be integrated with 𝑅𝐴𝑀𝑆 analysis in order to 

reduce the losses from failure and to ensure the performance requirement. 

 

The rest of the paper is organized as follows: Section 2 introduces an overview of RAMS and 

sources of uncertainty. Section 3 presents losses from failures. Section 4 discusses an 

illustrative case study. Section 5 provides the conclusion. 

 

2. OVERVIEW OF BASIC RAMS PRINCIPLES AND UNCERTAINTY  

 

In this section, an overview of basic RAMS principles and uncertainty is presented. It is 

relevant to consider the uncertainty analysis and combined with the risk, which can be related 

to the uncertainty regarding to the outcome of the event, to be able to support the RAMS 

analysis to make better predictions. 

 

2.1. Introduction to Basic RAMS Principles 

 

𝑅𝐴𝑀𝑆 is a central element in many different application fields, which are ultimately linked to 

the study of the failure, maintenance and availability of systems. The aim of 𝑅𝐴𝑀𝑆 is to 

generate input data in a life cycle of a system so that based on these data one can assess 

capability of a system. That is, it provides data on failure rates of the system, possible failure 

modes, mean down time (𝑀𝐷𝑇), maintenance operations, hazards and their consequences, etc 

(Simões, 2008). In the Arctic operational conditions, even though there are several factors that 

can significantly affect the 𝑅𝐴𝑀𝑆 of a system, there is a lack of both data and experience 

related to operation and design of petroleum production facilities. Hence, it is difficult to get 

exact available information about operational conditions in the Arctic, and hence leads to 



increase uncertainty and risks related to health, safety and environment (𝐻𝑆𝐸) (Barabadi et 

al., 2011). 

 

Therefore, it is relevant to consider the uncertainty analysis to investigate the uncertainty of 

variables that are used in decision-making problems. In other words, uncertainty analysis aims 

to make a technical contribution to decision-making through the quantification of 

uncertainties in the relevant variables. Hence, it has a positive contribution to the risk, which 

can be related to the uncertainty regarding to the outcome of the event. 

 

There are different methods that have been using to estimate the parameter uncertainty. Each 

of the methods has then their own advantage and limitation, and thus, it is important to choose 

the best suitable method based on the given conditions. 

 

2.2. Sources of Uncertainty and Methodology 

 

Uncertainty can be classified as model, parameter (data), and incompleteness (Drouin, 2009). 

Model uncertainty is rely on the validity of model assumptions. It happens because the models 

and their assumptions are not always valid or perfect due to the limitations in including the 

natural variability in the real life system. 

 

- Model uncertainty reflects the inability of a model and or design technique to 

represent precisely the system’s true physical behaviour, and therefore, it will, up to a 

certain degree, always exist. 

 

- Parameter uncertainty can be occurred due to inability to quantify the inputs and 

parameters of the model. In the Arctic region, data availability is limited. Thus, the 

lack of data, and hence 𝑅𝐴𝑀𝑆 models use assumptions to overcome this, leads 

statistical uncertainties in the estimated parameters, and will be reflected in the final 

results. Generic databases are established to provide data for 𝑅𝐴𝑀𝑆 analysis, but they 

also introduce uncertainty due to lack of relevance. 

 

- Incompleteness uncertainty is another type of uncertainty, which is either known or 

not known during in the course of 𝑅𝐴𝑀𝑆 assessment. However, both of them are not 

included in the assessment, off course, the unknown is unknown. The known 

uncertainties may be due to omission of factors, like failure modes, assumed to be 

negligible for the assessment’s results or outside the scope, whereas, the unknown 

uncertainties may be due to lack of knowledge (in particular, in the Arctic region), like 

the exclusion of unknown failure modes, or from interaction between foreseeable 

events. 

 

Thus, the potential sources of uncertainties so as to predict 𝑅𝐴𝑀𝑆 of the system (equipment) 

in the Arctic region based on the available data such as 𝑂𝑅𝐸𝐷𝐴 can be summarized as 

(Barabadi et al., 2011): 

 

- ‘‘Limited field data and information about the surrounding environment and failure 

data in the Arctic region (non-representative of historical data).  

- Random error in measuring the time to failure(𝑇𝑇𝐹) or time between failures (𝑇𝐵𝐹) 

(measurement errors).  

- Inconsistency and non-homogeneity of 𝑇𝐵𝐹 or 𝑇𝑇𝐹 data. 

- Systematic bias due to miscalibration of device.  



- Misclassification or handling and transcription error in the filed data.  

- Lack of human failure data during operation and maintenance process.  

- Estimating the uncertainty for unobserved systems in the Arctic region.’’ 

 

As mention above, it is important to select the appropriate method to do the uncertainty 

analysis based on the given condition. Uncertainty analysis can be analytical and simulation. 

Some of the powerful methods that have been using to describe the uncertainty parameter and 

to quantify the uncertainties are Monte Carlo (probabilistic) (Doubilet et al., 1984, Doucet et 

al., 2001) and 𝐹𝐴𝐶 (Fuzzy Alpha-Cut) (non-probabilistic) (Yang et al., 2008, Wong et al., 

2000). Both methods are different either interms of characterizing the input parameter 

uncertainty or ways of propagating from parameter level to model output level. That is, fuzzy 

logic and probability are different methods that have been used to express uncertainty (its 

propagation). However, Monte Carlo method is time consuming technique, it provides better 

output results compared to 𝐹𝐴𝐶 for more than one uncertain input variable (Abebe et al., 

2000). Whereas, for a single or limited input variables, 𝐹𝐴𝐶 provides better option than 

Monte Carlo, and 𝐹𝐴𝐶 is fast. As a result, the uncertainty analysis may provide an important 

result for decision-makers, and hence for the risk analysts. 

 

The risk analysts should use risk assessment methods to point out the most accurate result. 

Risk estimation involves the use of identified failure or hazardous data to estimate possible 

consequence and overall risk level using combination of qualitative and quantitative methods. 

Risk estimation process begins with the estimation of consequences of each failure event 

using qualitative methods if the identified event may not be readily quantifiable. However, if 

the level of uncertainty is very high, subjective safety analysis methods such as fuzzy 

reasoning approach which has the ability to deal with uncertainty may prove to be more 

appropriate in executing this task (Homlong, 2010). Some of the risk assessment methods are 

Preliminary Hazard Analysis (PHA), Hazard and Operability (HAZOP) Analysis, Failure 

Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), Event Tree Analysis 

(ETA), etc. Risk matrix can also be used for qualitative analysis of risk. 

 

 

3. LOSSES GIVEN FAILURES AND PROBABILISTIC RISK ASSESSMENT 

 

3.1. Losses given Failures 

 

In the Arctic, failure is always a threat for petroleum production activities. Every engineered 

system (component or equipment) will fail sooner or later, even with the best design, 

construction, maintenance, and operation (Blischke and Murthy, 2011). Hence, the frequency 

of failure can significantly increase in the Arctic operating condition due to several factors 

such as low temperature, ice, snow, etc. This may also increase losses associated with failures 

depending on severity of damage. The losses from failures are remarkably high for many 

production systems, in particular, in harsh operating condition, due to the complex challenge 

from the Arctic environment. For example, major components of the losses from failures for 

oil and gas production systems are the amount of lost production which is directly related to 

the amount of lost production time, the cost of mobilisation of resources and intervention, and 

the cost of repair or replacement (Todinov, 2007). A critical failure in a deep-water oil and 

gas production system, in particular, is required long downtimes and extremely high costs of 

lost production and intervention for repair. Furthermore, due to the Arctic sensitive 

environment to disruption, on one hand, but harsh and unforgiving on the other the 

environmental impacts can take longer to heal and cost more to remediate. In addition, such 



failures can have disastrous effects on the company profile. They can be represented in 

number of fatalities, lost production time, volume of lost production, mass of released harmful 

chemicals into the environment, lost customers, warranty payments, costs of mobilisation of 

emergency resources, insurance costs, etc (Todinov, 2007). 

 

Losses from engineering failures can be classified as (Todinov, 2007):  

- ‘‘Loss of life or damage to health  

- Losses associated with damage to the environment and the community infrastructure  

- Financial losses including loss of production, loss of capital assets, loss of sales, cost 

of intervention and repair, compensation payments, penalty payments, legal costs, 

reduction in benefits, losses due to change of laws, product liability, cost overruns, 

inflation, capital costs changes, exchange rate changes, etc. 

- Loss of reputation including loss of market share, loss of customers, loss of contracts, 

impact on share value, loss of confidence in the business, etc.’’ 

 

3.2.  Probabilistic Risk Assessment 

 

Generally, the risk of failure (expected loss or the classical risk ), 𝑅𝑓𝑟
, is expressed as:  

 

 𝑅𝑓𝑟
= 𝑃𝑓𝑟

× 𝐶𝑓𝑟 ,                                                                                               (1) 

 

 where, 𝑃𝑓𝑟
 is failure probability and 𝐶𝑓𝑟 is cost given failure.  

 

For instance, the cost given failure to an operator of production equipment 𝐶𝑓𝑟
, based on 

Todinov (2007), may include: cost of lost production, cost of cleaning up polluted 

environment, medical costs, insurance costs, legal costs, costs of mobilisation of emergency 

resources, cost of loss of business due to loss of reputation and low customer confidence, etc, 

and the cost of failure to the manufacturer of production equipment may include: warranty 

payment if the equipment fails before the agreed warranty time, loss of sales, penalty 

payments, compensation and legal costs. 

 

From (1), the probability of failure at time 𝑡 is given by: 

  

 𝑃𝑓𝑟
=

𝑅𝑓𝑟

𝐶𝑓𝑟

                                                                                                          (2) 

 

To determine the probability of failure at time 𝑡 for risk-based Arctic 𝑅𝐴𝑀𝑆 analysis, we have 

adapted the Todinov’s (2007) methodologies. Let 𝑅𝑓𝑚𝑥 be the maximum acceptable risk of 

failure and 𝑃𝑓𝑚𝑥 be the corresponding maximum acceptable probability of failure at time 𝑡. 

Then, equation (2) can also be presented as:  

 

 𝑃𝑓𝑚𝑥 =
𝑅𝑓𝑚𝑥

𝐶𝑓𝑟

.                                                                                                   (3) 

 

Therefore, for a system consist of only one component, requirements of system reliability can 

be expressed using (3). That is, the minimum reliability, 𝑅𝑚𝑛, of the component required to 

keep the risk of failure at time 𝑡 at least equal to the maximum tolerable risk 𝑅𝑓𝑚𝑥 can be 

determined as:  

 

 𝑅𝑚𝑛 = 1 − 𝑃𝑓𝑚𝑥 



 = 1 −
𝑅𝑓𝑚𝑥

𝐶𝑓𝑟

                                                                                                       (4) 

 

Equation (4) should then be used for the Arctic 𝑅𝐴𝑀𝑆 analysis. It does basically show that so 

as to maintain the risk of failure below the maximum tolerable level, 𝑅𝑓𝑚𝑥, a component 

whose failure is associated with large losses should be more reliable compared to a 

component whose failure is associated with smaller losses (Todinov, 2007). This is, in 

particular, the root of the risk-based design for Arctic 𝑅𝐴𝑀𝑆 analysis of the system which 

even consists of identical components in its hierarchy. It is obvious that more production units 

can be affected due to failure of the critical or higher component of the system in the 

hierarchy. Therefore, it is relevant to consider the required minimum reliability level of this 

component to be large. 

 

Furthermore, a new measure of the loss from failure in addition to the classical risk equation 

has adapted from Todinov (2007) for the Arctic 𝑅𝐴𝑀𝑆 analysis. The method considers the 

unexpected loss instead of the expected loss from failure. Losses from failure can further be 

categorised as potential loss and conditional loss (Todinov, 2007). The concepts of potential 

loss and conditional loss are introduced because the classical risk equation only estimates the 

average value of the potential loss from failure. Thus, a new measure of the loss from failure 

which avoids the limitations of the classical risk measure is incorporated and it is the 

cumulative distribution of the potential loss. Potential loss is a loss related to a single and only 

premature failure, which can happen before the a specified time 𝑡. That is, it is unconditional 

quantity. Potential losses can be associated with multiple failures in the time interval (0, 𝑡). 

However, conditional loss is a loss given that failure has occurred. Hence, it is conditional 

quantity. Both potential loss and conditional loss can be used for non-repairable and 

repairable systems whilst the concept potential losses can only be for repairable systems. 

Furthermore, both the conditional loss and the potential loss can be random variables. The 

distribution of the conditional loss can only be determined using historical data which is 

related to the losses from failures, whereas the distribution of the potential losses requires an 

estimate of the probability of failure in addition to the historical data. 

 

According to Todinov (2007), the distribution function 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) of the potential loss 

can be expressed as the probability that the potential loss 𝑋 will not be greater than a specified 

value 𝑥. The probability 𝐹(𝑥) that the potential loss 𝑋 is not greater than 𝑥 is then expressed 

as a sum of the probabilities of two mutually exclusive events, that is: 

 

 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = (1 − 𝑝𝑓𝑟
)𝐻(𝑥) + 𝑝𝑓𝑟

𝐹(𝑥 | 𝑓𝑟),                                      (5) 

 where  

 𝑓𝑟 is the given failure.  

  𝑝𝑓𝑟
 is the probability of failure.  

  𝐻(𝑥) is the Heaviside unit step function representing the conditional probability that 

the loss is not greater than 𝑥 given that no failure. 

  𝐹(𝑥 | 𝑓𝑟) is the conditional probability that the loss is not greater than 𝑥 given failure.  

 

The conditional distribution of the loss given failure (the conditional loss) is then given by:  

 

 𝐹(𝑋 ≤ 𝑥 | 𝑓𝑟) = ∑  𝑁
𝑘=1 𝑝𝑘 | 𝑓𝑟

𝐹𝑘(𝑥 | 𝑓𝑟),                                                           (6) 

 where   

 𝐹𝑘(𝑥 | 𝑓𝑟) is the conditional distribution of the loss given failure characterised by the 

𝑘𝑡ℎ failure mode.  



 𝑝𝑘 | 𝑓𝑟
 is the conditional probability that given failure, the 𝑘𝑡ℎ failure mode has 

initiated the failure first (∑  𝑁
𝑘=1 𝑝𝑘 | 𝑓𝑟

= 1).  

 𝑁 is number of system components arranged in series with mutually exclusive 

failures, and characterized by 𝑁 mutually exclusive failure modes.  

 

The distribution of the potential loss associated with mutually exclusive failure modes is then: 

 

 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = (1 − 𝑝𝑓𝑟
)𝐻(𝑥) + ∑  𝑁

𝑘=1 𝑝𝑘𝐹𝑘(𝑥 | 𝑓𝑟),                            (7) 

 

where 𝑝𝑘 is the probability that the 𝑘𝑡ℎ failure mode will initiate failure in the time interval 

(0, 𝑡), and it is given by : 

 

 𝑝𝑘 = ∫  
𝑡

0
𝑓k(𝑠)[1 − 𝐹1(𝑠)]. . . [1 − 𝐹𝑘−1(𝑠)][1 − 𝐹𝑘+1(𝑡)]. . . [1 − 𝐹𝑁(𝑡)]d𝑠  (8) 

 

where 𝐹𝑘(𝑡) and 𝑓𝑘(𝑡) are the distribution and density functions respectively for the times to 

failure characterising 𝑁 statistically independent failure modes. 

 

Furthermore, the probability that the potential loss will exceed a specified critical quantity 𝑥 

can be determined as: 

 

 𝑃(𝑋 > 𝑥) = 1 − 𝐹(𝑥) = ∑  𝑁
𝑘=1 𝑝𝑘[1 − 𝐹𝑘(𝑥 | 𝑓𝑟)]    (x > 0)                        (9) 

 

 = 𝑝𝑓𝑟
∑  𝑁

𝑘=1 𝑝𝑘 | 𝑓𝑟
[1 − 𝐹𝑘(𝑥 | 𝑓𝑟)]                                                                 (10) 

 

In addition, the probability that given failure, the loss will be larger than a specified limit is 

given by  

 𝑃(𝑋 > 𝑥 | 𝑝𝑓𝑟
) = ∑  𝑁

𝑘=1 𝑝𝑘 | 𝑓𝑟
[1 − 𝐹𝑘(𝑥 | 𝑓𝑟)].                                             (11) 

 

Therefore, from (10) and (11), the probability that the conditional loss will exceed a specified 

quantity is always greater than the probability that the potential loss will exceed the specified 

quantity, that is, 𝑃(𝑋 > 𝑥 | 𝑝𝑓𝑟
) > 𝑃(𝑋 > 𝑥). For example, this specified quantity can be the 

optimal value which the company will be able to pay. 

 

The expected value of the potential loss from failures 𝐶 is then: 

  

 𝐶 = ∫  𝑥𝑓(𝑥)d𝑥 = ∑  𝑁
𝑘=1 𝑝𝑘𝐶𝑘(𝑥 | 𝑓𝑟),                                                         (12) 

 

where 𝐶𝑘(𝑥 | 𝑓𝑟) = ∫  𝑥𝑓𝑘(𝑥 | 𝑓𝑟)d𝑥 are the expected values of the loss given that failure has 

occurred, characterising the individual failure modes. 

 

For example, based on failure modes characterised by constant hazard rates 𝜆𝑘, and using (12) 

and regarding the expected loss given failure, the risk (the expected value of the potential 

loss) is: 

 𝑅𝑓𝑟
= [1 − exp(− ∑  𝑁

𝑘=1 𝜆𝑘𝑡)] ∑  𝑁
𝑘=1 𝑝𝑘 | 𝑓𝑟

𝐶𝑘(𝑥 | 𝑓𝑟) 

 = [1 − exp(− ∑  𝑁
𝑘=1 𝜆𝑘𝑡)] ∑  𝑁

𝑘=1 (
𝜆𝑘

∑  𝑁
𝑘=1 𝜆𝑘

𝐶𝑘(𝑥 | 𝑓𝑟)), 

 where the sum  

 ∑  𝑁
𝑘=1 (

𝜆𝑘

∑  𝑁
𝑘=1 𝜆𝑘

𝐶𝑘(𝑥 | 𝑓𝑟)) 



 

is representing the expected conditional loss (given that failure has occurred before time 𝑡). 

Further more, for a non-repairable system with the hazard rate 𝜆(𝑡) depending on time, and 

the probability of failure:  

 1 − exp (− ∫  
𝑡

0
𝜆(𝑠)d𝑠) 

before time 𝑡, the risk is then given by:  

 𝑅𝑓𝑟
= 𝐶 = (1 − exp (− ∫  

𝑡

0
𝜆(𝑠)d𝑠)) ∑  𝑁

𝑘=1 𝑝𝑘 | 𝑓𝑟
𝐶𝑘(𝑥 | 𝑓𝑟).                       (13) 

 

4. AN ILLUSTRATIVE CASE STUDY 

 

The case study is based on two simple systems and both were operating in the Arctic 

environment. Each of them is consisting of three components which are connected logically in 

series. Figure 1 shows the two systems with three components each, and all components are 

connected in series and characterized by a constant failure rate. The assumed data for both 

systems are presented in Table 1. The components of the first system are 𝐶11, 𝐶12 and 𝐶13, 

and for the second system are 𝐶21, 𝐶22 and 𝐶23 as shown in Figure 1. Component 𝐶11 has 

failed on average twice a year and the losses associated with its failure are 3000$. Component 

𝐶12 has failed on average 9 times a year and the losses associated with its failure are 200$, 

and component 𝐶13 has failed on average 2 times a year and the losses associated with it are 

2000$.  

 

 
Figure 1: Two systems with two components each 

 

The components of the second system are the same type with that of the first one, and have 

the same losses associated with failure of the corresponding components as the assumed data 

have shown. However, the probabilities of failure of both components correspondingly are 

different. That is, component 𝐶21 has failed on average 3 times a year, component 𝐶22 has 

failed on average 4 times a year and 𝐶23 has failed on average 3 times a year. It is clear that 

the first system will fail whenever either component 𝐶11 or component 𝐶12 or 𝐶13 fails 

because they are connected in series, and the same is true for the second system. 



Table 1: Assuemed 𝑀𝑇𝑇𝐹𝑖𝑗 per year and Losses from failures (𝐶𝑗) 

 𝑀𝑇𝑇𝐹𝑖𝑗 per year Losses from failures (𝐶𝑗) 

𝐶11 2 3000 

𝐶12 9 200 

𝐶13 2 2000 

𝐶21 3 3000 

𝐶22 4 200 

𝐶23 3 2000 

 

Based on the conventional 𝑅𝐴𝑀 analysis, the second system is more reliable than the first 

system because it has failed 10 times on average per year as compared to the first system, 

which has failed 14 times on average per year. However, the result is different based on the 

risk analysis model. That is, the total expected loss (EL) from failure of system one is:  

 

 𝐸𝐿1 = 𝑀𝑇𝑇𝐹11 × 𝐶1 + 𝑀𝑇𝑇𝐹12 × 𝐶2 + 𝑀𝑇𝑇𝐹13 × 𝐶3 

 = 2 × 3000 + 9 × 200 + 2 × 2000 = 11800$.                                         (14) 

 

And the total expected loss from failure of second system is: 

 

 𝐸𝐿2 = 𝑀𝑇𝑇𝐹21 × 𝐶1 + 𝑀𝑇𝑇𝐹22 × 𝐶2 + 𝑀𝑇𝑇𝐹23 × 𝐶3 

 = 3 × 3000 + 4 × 200 + 3 × 2000 = 15800$.                                         (15) 

 

From (14) and (15), based on the risk model, it is demonstrated that the expected loss 

associated with failure of the more reliable system, second system, is larger than the first 

system. 

 

This illustrative case study verifies that it can be misguiding if a system is chosen only based 

on its reliability. Thus, a system with larger reliability does not always mean a system with 

smaller losses from failures if system failures are characterized by different costs. However, a 

system with larger reliability does mean a system with smaller losses from failures if system 

failures are characterized by same costs. Hence, components associated with large losses from 

failures should be designed to a higher reliability level. 

 
 
5. CONCLUSION  

 

The conventional 𝑅𝐴𝑀𝑆 analysis has been using for a long time as a performance measure of 

the system. However, choosing the more reliable system does not always mean that less losses 

from its failure. In this paper, risk-based 𝑅𝐴𝑀𝑆 analysis methodology has been adapted, to 

improve the reliability performance analysis of a production system in the Arctic operating 

condition. Further, the basic RAMS principles and the main uncertainties involved in the 

RAMS analysis has been discussed. A simplistic case study has been presented, to estimate the 

total expected loss (EL) from failure of system deployed in the Arctic region. The result of the 

illustrative case study has demonstrated that the system with larger reliability does not always 

mean the system with smaller losses from failures if system failures are characterized by 

different costs. However, the system with larger reliability does mean the system with smaller 

losses from failures if system failures are characterized by same costs. That is, the system 

with large reliability is not always described by smaller losses from failures. Hence, a risk-

based approach considering 𝑅𝐴𝑀𝑆 analysis play an important role to optimize the production 

performance by dealing with losses from failures and uncertainties. Therefore, 𝑅𝐴𝑀𝑆 



analyses related to production systems, in particular in the Arctic region, is essentail in 

strategic decision.  
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