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ABSTRACT

We modelled punch through tests on partly consolidated ice rubble using 2D combined finite-
discrete element method (FEM-DEM). We ran simulations with various freeze bond strengths
and block to block friction coefficients. In this paper, we demonstrate the close relation of
rubble failure and deformation patterns to indentor load records. We show that the buoyant
load component due to the rubble becoming detached from the surrounding rubble field, and
displacing during an experiment, is of crucial importance in interpretation of punch through test
results in terms of ice rubble material properties.

INTRODUCTION

Punch through experiments are widely used in arctic engineering for testing ice rubble prop-
erties. In a punch through experiment, a flat indentor platen penetrates through the floating
ice rubble mass while the force applied by the rubble on the indentor is measured. The force
records are then used to derive some rubble material properties. Several authors have performed
full scale and laboratory scale punch through experiments. These experiments are reviewed in
Liferov and Bonnemaire (2005).

A number of authors, e.g. Liferov et al. (2003); Heinonen (2004); Serré (2011), have simulated
punch through experiments using continuum models. We demonstrated in Polojärvi et al. (2012)
that the continuum description potentially renders out some important phenomena within the
rubble. To avoid this, we modelled the rubble as discontinuum using combined finite-discrete
element method (FEM-DEM) (Munjiza et al., 1995; Munjiza, 2004). Discontinuum modelling
has been earlier used in ice mechanics by e.g. Hopkins (1992) and Paavilainen et al. (2009).

In this paper we concentrate on the effects of rubble deformation patterns on indentor load
records in the case of partly consolidated rubble. First, we briefly describe the simulations and
then we introduce and discuss the results. The paper only includes a few findings from our
punch through test simulations. A comprehensive description of our FEM-DEM model and
more results can be found from Polojärvi and Tuhkuri (2013).
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Figure 1: Snapshots from a simulation showing (a) few ice blocks in a rubble being (b) bonded
together by freeze bonds (red).

SIMULATIONS

In our FEM-DEM model, each ice block within the rubble, the contact forces between the
blocks, the deformation of the blocks, and the rubble freeze bonds were modelled. For mod-
elling these phenomena, the blocks are meshed into finite elements (see Figure 1a). In addition
to contact forces, the deformation and the motion of the blocks is caused by inertial forces,
cohesive forces due to bonds, and buoyant force due to water. The material behavior of the
individual continuous ice blocks was linear elastic. The simulations were explicit and central
difference method was used to advance between the time steps. updating of node positions
using Newton’s laws for the next time step.

The blocks within the pile were bonded together by freeze bonds (see Figure 1b), which we
modelled using initially rigid cohesive elements (Camacho and Ortiz, 1996). A cohesive crack
growth process started in a freeze bond, if its stress state was such that

σcr ≤

{√
β−2t2t + t2n if tn ≥ 0

β−1(|tt| − µ|tn|) if tn < 0.
(1)

In this criterion tt and tn are the tangential and normal components of the traction vector t at
a bond, respectively, and µ is the friction coefficient. Furthermore, β is the shear stress factor,
defined as β = τcr/σcr, where τcr and σcr are the shear and tensile strengths of the bond,
respectively. Once the failure criterion was reached, the bond went through energy dissipating
cohesive crack growth process. During this process, the force between the initially bonded
blocks ramped down linearly as the distance between the block points originally belonging to
the bond increased as described in detail in Polojärvi and Tuhkuri (2013).

The simulation domain is shown in Figure 2 and the main simulation parameters are given in
Table 1. The simulations were performed in two phases: (1) first, a rubble pile with random
configuration was generated and then (2) the indentor platen moved down into the rubble. We
performed simulations on ridges with four different initial configurations. The freeze bond
strength was not constant through the rubble depth but instead decreased linearly to ∼ 10 % in
the bottom of the rubble (rubble thickness h ≈ 4 m). A number of freeze bond shear strength
values were used in the simulations. As Table 1 shows, the freeze bond shear strength, τcr, on
top of the rubble varied between 5 and 100 kPa. These limits were chosen after values measured
for τcr in earlier experiments. There is no data on freeze bond freeze bond tensile strength, σcr,
values. Here, we used value σcr = 10 kPa on top of the rubble in all simulations.



Figure 2: Simulation domain and boundary conditions. The upper boundaries of the consol-
idated layer (marked with dashed lines) had a rigid boundary condition. The symbols in the
figure are as follows: h is the rubble thickness, w the domain width, yI the direction of indentor
penetration, and g the gravitational acceleration. The values of the dimensions in the figure are
collected in Table 1.

Table 1: Main parameters used in the simulations. The directions (Dir.) given in the table refer
to the global coordinate system in Figure 2. The freeze bond shear and tensile strength values
refer to the values on top of the rubble. Indentor size was chosen after Heinonen (2004)

Parameter Dir. Symbol Unit Value

General number of blocks - - - 665
gravitational acceleration - g ms−2 9.81
domain width - - m 50
ndof - - - ∼ 150000

Contact penalty term - s - 2 · 1011

time step - ∆t s 1 · 10−6

Blocks length - - m 0.6 . . . 1.8
thickness - - m 0.2 . . . 0.4
mass density - ρb kgm−3 920
friction coefficient - µ - 0.05, 0.3
Young’s modulus - E GPa 2
viscous damping constant - - Pas 2.5 · 104

Water mass density - ρw kgm−3 1010
Rubble keel depth - h m ∼ 4

bulk porosity - η - ∼ 0.25
Indentor width x wI m 4

thickness y hI m 1
final velocity y vI ms−1 0.1

Consolidated layer thickness y - m 1
Young’s modulus - - GPa 2

Freeze bond Shear strength - τcr kPa 5 . . . 100
Tensile strength - σcr kPa 10
Fracture energy - G Jm−2 15
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Figure 3: Results from simulations: (a) Typical indentor force-displacement (F − yI) records
from the simulations and (b) the maximum load, Fm, as a function of the critical freeze bond
shear strength, τcr. The marker fill color in (b) indicates the Fm values from the simulations
with different friction coefficients µ as shown by the legend.

RESULTS AND ANALYSIS

Two typical indentor force-displacement (F − yI) records from the simulations are given in
Figure 3a. As the indentor moved down, the indentor force initially increased with high rate
and showed a peak value Fm with fairly small indentor displacement. The Fm values depended
on the initial configuration of the ridge as Figure 3b shows. As expected, the Fm values in-
creased with the freeze bond shear strength τcr. Anyhow, the rate ∂Fm/∂τcr of increase was
not constant: In general ∂Fm/∂τcr was somewhat higher in the case of weakly bonded ridges.
dependency Fm values on the ridge geometry and the the change in the rate ∂Fm/∂τcr, were
explained by the dependency the rubble failure patterns as described below.

We observed that the effect of bond strength on Fm and on non constant rate ∂Fm/∂τcr were
related to differences in the initial failure patterns of the rubble. The initial failure planes directly
affect the amount of rubble mass supported by the indentor and thus the load component due to
rubble buoyancy. We assessed the effect of the initial rubble failure planes by using the area Ap

(defined in Figure 4a) of the plug generated and starting to move down with the indentor in the
initial rubble failure.

Figure 4b shows the Ap values as function of τcr and suggests, that the increase in freeze bond
strength induces a change in the initial rubble failure pattern up to a certain τcr (here up to
τcr = 50 kPa), with no change in the failure patterns with further increase in τcr. In other
words, in the case of weak freeze bonds, the increase in Fm with τcr is accompanied by a
change in the failure patterns. When the bonds are strong, the failure patterns do not change
with τcr.

After the peak, the indentor load decreased up to ∼ 150 mm of indentor penetration (see Fig-
ure 3a). This post-peak decrease in indentor load was related to the rubble deformation patterns
as illustrated in Figure 5a and b. For the following discussion, we should also note, that the area
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Figure 4: Effect of the area of the plug Ap forming in the initial failure of the rubble mass: (a)
Assessing Ap using the failed freeze bonds within the rubble and (b) the mean values of Ap

from all simulations as a function of τcr with friction coefficient µ values 0.05 and 0.3. The data
is from simulations on all ridges with freeze bond tensile strength σcr = 10 kPa.

(a)

(b)

Figure 5: Displacement field of the rubble and a change in the rubble deformation patterns for
a simulated ridge: (a) After initial failure (yI = 5 mm), a large volume of rubble has been
cut off the surrounding field, but (b) this volume decreases during further indentor penetration
(yI = 150 mm). The colors indicate vertical displacement uy. Here, τcr = 50 kPa, σcr = 10
kPa, and µ = 0.05.
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Figure 6: Post-peak load and deformation patterns: (a) definition of Ad(K, yI) for K = 0.5 and
0.9 – for example the Ad(K = 0.5, y∗I ) at indentor displacement y∗I includes the rubble with
downward displacements of uy > 0.5y∗I – and (b) post-peak indentor load F (black line) with
the buoyant forces Fd(K = 0.45, yI) (dashed red line) and Fd(K = 0.9, yI) (dash dotted blue
line) as a function of the indentor displacement yI mm from the simulation in Figs. 5a and b.

of rubble having the same displacement as the indentor (indicated by darkest blue in the figures)
remains approximately equal in the simulation of Figure 5.

We defined the areas of the displaced rubble as illustrated in Figure 6a to study the relation
between post-peak load and deformation patterns as follows. At various indentor displacements,
yI , we used downward rubble displacement fields, uy (such as those in Figures 5a and b) to
define areas Ad of the rubble displaced by more than some ratio K = {0 . . . 1} of yI . For
example, the area Ad(K = 0.5, yI = 100 mm) included rubble with uy > 0.5 · 100 mm = 50
mm. Then we used areas Ad(K, yI) to derive a buoyant load

Fd(K, yI) = (1− η)(ρw − ρi)gAd(K, yI), (2)

which we compared to the post-peak indentor load with a number of K values. In the previous
equation, η is the pile bulk porosity, ρw and ρi the material densities of water, and ice and g the
gravitational acceleration. As an example, the load Fd(K = 0.5, yI = 100 mm) is an estimate
for buoyant load of rubble with uy ≥ 50 mm.

The three Fd plots in Figure 6b depict the change in the rubble deformation field with indentor
displacement. The same change is also seen by comparing Figure 5a and b: The plug which
started to move after the initial failure (Figure 5a) dissolved due to bond failures as indentor
proceeded its motion, which led to a smaller amount of rubble moving downwards later in
the simulation (Figure 5b). Corresponding to this change in rubble deformation field, F and
Fd(K = 0.45, yI) in Figure 6b both decreased with increasing yI . Furthermore Figure 5a
and b show, that the amount of rubble that moved the same amount as the indentor (dark blue
area in the figures) remained approximately constant, which explains the smaller decrease in
Fd(K = 0.9, yI) in Figure 6b. the buoyant component and how it changes.

A similar relationship between the deformation fields and the post-peak load levels applied
for all simulations. To show this, we derived data sets with values of Ad(K, yI) with K =
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Figure 7: The data set F − Ad(K, yI) (see text for details) when K = {0.1, 0.5, 0.9} with
indentor displacements of yI = {20, 30, 40, . . . , 150} mm: (a) Simulations on Ridges 1-4 with
a freeze bond tensile and shear strength of σcr = 10 kPa and τcr = 50 kPa, respectively, and
(b) all simulations. The legend gives the correlation coefficients R and the linear fits of the data
sets for each K. Data points from the simulations with both friction coefficients (µ = 0.05 and
0.3) are included in the figure.



{0.1, 0.45, 0.9} and yI = {20, 30, 40, . . . , 150} mm and corresponding F values for each simu-
lation. One such set would include the Fd(K, yI) and F data given by the markers in Figure 6.
The F − Ad(K, yI) sets from all of the simulations for each K = {0.1, 0.45, 0.9} are shown
in Figure 7a and b, together with their correlation coefficients (R) and linear fits. Figure 7a
gives F −Ad data from the simulations done on all initial configurations with freeze bond shear
and tensile strengths of τcr = 50 kPa and σcr = 10 kPa, respectively, and Figure 7b includes
the data from all of the simulations. In addition, the figures show a line for buoyant force
F = (1− η̄)(ρw − ρi)gA, where η̄ is the mean porosity of the initial configurations.

Figures 6 and 7 illustrate three important findings related to the interpretation of punch through
test F − yI records on the post-peak regime: (1) The assumption, that only the rubble directly
under the indentor causes the buoyant load component is incorrect, as (2) the indentor supports
a larger volume of displacing rubble, leading to (3) the post-peak load having a large component
due to buoyancy, which can decrease and be mistaken for as material softening.

The first two findings in the previous paragraph are shown by the correlation coefficients, R, for
the data sets F−Ad(K, yI) in Figure 7. These areR = 0.13 whenK = 0.9 (no correlation) and
R = 0.88 when K = 0.45 (clear correlation) for the different ridge geometries with constant
freeze bond properties (Figure 7a). For all of the simulations, data set F − Ad(K = 0.9, yI)
shown had the value R = 0.46, but still data set F −Ad(K = 0.45, yI) with the value R = 0.82
clearly yield the best correlation (Figure 7b). The data set F − Ad(K = 0.9, yI) show better
correlation in Figure 7b than in Figure 7a, which was due to higher Ad(K = 0.9, yI) values for
the highest freeze bond strengths (τcr = 100 kPa).

In addition to the R values, the lines giving the buoyant load as a function of A in Figure 7a and
b support the second finding in both cases, since the data set F −Ad(K = 0.45, yI) data points
in general lie close to the lines in the figures. The last finding is also supported by the data set
F − Ad(K = 0.45, yI) in Figure 7a and b, and was also illustrated by Figure 6: A decrease in
Ad(K = 0.45, yI) leads to a decrease in the post-peak F . Hence, the decrease in F is related
to a change in the deformation patterns of the rubble pile, not to the softening of the rubble
material itself.

CONCLUSIONS

We modelled ridge keel punch through experiments on partly consolidated ridges. We varied
the ridge keel strength by varying the shear strengths of the freeze bonds. We found that the
maximum load in the experiments is dependent on initial failure pattern of the rubble, which,
on the other hand, is dependent on the strength of the freeze bonds. Similarly, we observed that
the post peak-load levels show a clear dependency on the rubble volume being displaced by
the indentor platen during the experiment. In the future, a study on the details of the effect of
the initial configuration should be carried out together with simulations with more freeze bond
tensile to shear strength ratios. Further, a detailed study on the effect of loading rate should be
carried out. In the work leading to this paper, only simulations with indentor velocities given
in Table 1 and lower were performed, with lower velocities leading to negligible change in the
simulation results.
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