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ABSTRACT 

In the paper the method of signal processing is offered. It was developed specially for 
processing of ice loads observations made in ice basin. The proposed method includes 
numerical search of the signal oscillatory components parameters by minimization of these 
components covariance and model discrepancy variance. In the method the clustering 
procedure is used for the final frequencies estimation.  

Uncorrelated random processes which parameters are estimated this way appear to be 
useful to describe the greater part of initial signal variance. The components of particular 
interest are stationary stochastic processes with determined frequency and random phase. The 
discrepancy for such model is in general a non-stationary process, but with variance much less 
then variance of initial signal. The characteristic of this method is that it uses not large time 
intervals, for example 1 second. The selection of time interval length depends on existing 
noise characteristics. 

In the paper the offered method is applied to explain the ice loads measurements that 
were got in experiments with tanker and ice-breaker hulls in ice basin. In the last section of the 
paper some statistics values for estimated parameters and ice load signal discrepancy are 
given.  

Comparing to spectral investigation, this method do not use necessarily orthogonal 
trigonometric functions to describe oscillatory components. But at the same time numerically 
found frequencies conform to the general spectral investigation results. 

 

STOCHASTIC MODEL FOR ICE LOADS SIGNAL 

Consider the dynamometer signal  tX  that was received in the experiment with the 
model of tanker or ice-breaker hull in the ice basin. Assume that the values of the signal 
recorded in an equidistant discrete time points, so we can take  tX  as a stochastic process 
with discrete time and continuous state, i.e. each random variable  0tX  for the time value 0t  
is continuous.  

The recorded signal is a superposition of model response to the phenomenon of ice 
destruction, equipment noise and the model’s swinging and pitching due to the forces applied 
on its hull (Sazonov, 2010). Some of these components on a relatively short period of time can 
be described by a model of stationary signal. 

Let fix the time window of n discrete observations starting from the moment of time kt . 
Let this time window corresponds to T seconds. Let we select the time window that way that 
within it the process  tX  can be represented by the following expansion: 
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    ttAtV jjjj  sin ,     (2)  
   iiii tBtU  sin ,      (3)  

where jA , iB  and i  – random variables, i  has a uniform distribution on the interval  2;0 ; 

i − constant parameters,  tj  − nonrandom functions.  Here processes  tU i  are stationary in 
wide sense. Concerning the processes  tV j , in general they can not be considered as 
stationary. 

Processes  tV j , qj ..1 ,  tU i , pi ..1 , and  tY1  are uncorrelated by assumption, hence  
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where  tDX  is variance of  tX . 
We suggest the following method of estimating the parameters of (1). 
Suppose we have a realization of the random process  tX  at successive times 

Nt ,...,1,0 , nN  . Consider the part of this realization which bounded by a the time window 

starting at the point of time ktk  . Then  
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estimator of km . 
Assume the validity of expression (1). Denote     kxtXtX ~ . For the realization  tX~  

bounded by the time window with index k , that starts at moment of time kt , we can 
numerically solve the next optimization problem: 
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    tbbU sin,, ,     (6)  
with boundary 0b , where  , b ,   are real variables. Here 2m  is a sample variance and K̂  
is two-sample covariance. For this problem we take    ,0 ,   2;0 , Rb . 

Denote m the number of time windows of the same length that are applied to realization 
of  tX , thus mk ..1 . Solving the problem (5) for m time windows we obtain samples   b , 
  ,    of size m as well as segments  tEk , mk ..1  of realizations of error process. 

We note that there is no reason to consider  tEk  as realization of stationary process as 
well as it is for the original signal  tX . But from  tEk  in some cases, we can allocate 
stationary component with significant variance. 

By the statement of the problem (5) the components E  and U  whose parameters have 
been estimated numerically typically have low covariance. Therefore the use of the theoretical 
formula (4) in most practical cases is justified. 

We solve the problem (5) r times. In all cases except the first, instead of  tX  we'll take 
the corresponding error after removal out of the original signal the components that were 
previously evaluated by (6).  



We will unite samples  j , rj ..1 , in a total sample   . For the representativeness of 
the sample    we will take m and r so that their product mr  will be not less than 50. Here 
mr  is the size of the sample   . 

There is reason to assume the presence of narrow-band harmonic components for a 
stochastic process of ice loads, recorded when dragging a model of a tanker or ice-breaker 
through an ice field. We will implement clustering on    by a given number of clusters. For 
this purpose we will use K-means clustering algorithm also known as Hard C-means (HCM) 
(McKay, 2003 & Rutkowski, 2008).  

As estimators of parameter i  of components (3)-(4) we’ll take centers of the clusters 
that have been found by the mentioned algorithm. 

If the elements of the cluster considered as a separate observations of the random 
variable W , then, for example, the mean *  of the elements of this cluster will have properties 
of consistent, unbiased and efficient estimator of the W expectation  WM . We will use K-
means modification that takes arithmetic mean of elements of the cluster as its center.  

Numerical experiments have shown that the composition of the sample   , in general, 
depends on the choice of the time window size n because of nonstationarity of the original 
signal  tX . However, for a special type of experiments in the ice basin, there is usually an 
interval of n, that the centers of the clusters are almost constant. However, for the special type 
of experiment in ice basin usually it is an interval for n exist, so that within this interval cluster 
centers for    are nearly constant. Evident that this happens because of the following two 
reasons: 

1) if the used time window has a length of n, close to the period of existing in  tX  low-
frequency oscillations with a variable phase and slightly varying frequency;  

2) signal  tX  is noised by the component with constant frequency but variable phase and 
amplitude. 
If we will greatly increase the size of the time window, the frequencies obtained during 

the solution of problem (5) become very low. This shows that for a very wide window, the 
ordinary linear regression becomes the preferred trend comparing to the trigonometric function 
(6). 

Then in the problem (5) we shall take *
i  as a fixed value of parameter i  and after that 

recalculate values for kb  и k  for all time windows, mk ..1 . Thus we shall get new samples 
 ib~  and  i~ . 

Investigating of ice loads that were registered in tests in the ice basin, demonstrated that 
oscillatory components with constant frequencies can be attributed to one of two types − (2) or 
(3). 

Using the assumption (2) we can consider that values k  found for fixed i  are depend 
on k . So the researcher needs to determine the type of function  k .  Experiments have 
shown that for the "core" frequency i , apparently responsible for the vessel hull's rocking 
due to ice loads,  k  sometimes had the character of the oscillatory function.  

If the dependence k  on k  is not evident we can unite k  for fixed i ,  mk ..1 , into 
the sample  i~  of size m. According to the assumption (3) we can consider  i~  as a sample 
generated by random variable i . Let investigate he sample  i~ . For the mentioned problem 
of ice loads data analysis we will propose a hypothesis - "a random  variable i  has the 
uniform distribution on the interval  2;0 ". For testing of this hypothesis we can use 
Kolmogorov-Smirnov test (Bolshev & Smirnov, 1983).  



Model (1) has next useful features. If we can ignore components  tU i , pi ..1 , then 
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Let consider the component (3). For the expected value of random variable  it sin , 
where i  is uniformly distributed on the interval  2;0 , we have:    

  0sin  itM . 
And therefore in the case of independent random variables iB  и i , for  tU i  (3) 

expected value we have: 
    0sin  iiii tMMBtMU     (7)  

Thus in the mentioned case of considering model (1) only with components (3), the error 
process  tY  has zero mean, i.e. it is centered. 
We can estimate the practical usefulness of offered method using the estimator of the next 
theoretical ratio:  
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 In this paper an estimator   will be used for this purpose: 
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where  kXs2  is a sample variance calculated for the sample of all process  tX  observations 
within the time window started at kt ; and  kYs2  is sample variance calculated for the sample 
of errors after deleting all components (2) and (3) within the same time window. 

Thus, if the model (2)-(3) is suitable to describe initial signal in the sense of error’s 
variance minimization, then we receive small value of .  

At last we can note that the value of kx  can be obtained by the regular procedure of 
smoothing the signal − m data items averaging . The variance of kx , mk ..1 , will decrease 
with increasing m, i.e. with expansion of time window.  But at the same time, because of 
unstationarity of  tX , we can expect increasing of  values for the fixed number p of 
components (2)-(3), and that is undesirable. 

 

APPLICATION OF STOCHASTIC MODEL TO EXPERIMENTAL DATA  

We will use the proposed model for the signals that are noised by electrical noise (Figure 
1a)) as well as for the signals that are free from such interference (Figure 1b). Let consider 
experiments with tanker hull model that were conducted in Krylov State Research Center’s ice 
basin. In these experiments model was towed by a trolley with velocity 0,1 m/sec (Figure 1a) 
and 0,3 m/sec through the ice field of 25 and 40 mm thickness.  

Let examine observations of stochastic process  tX  at successive moments of time 
1090,...,1,0t . We shall take 90n  as a size of time window, this corresponds to 0,9 seconds. 



The time window we shall sequentially shift forward by 10 observations , which corresponds 
to 0,1 seconds, until the end of  tX , thus 100m . 

 

a) b) 
Figure 1. Observations of process  tX ,  model velocity 0,1 m/sec: a) tanker, ice field 

thickness is 25 mm (signal is noised by electrical noise); b) ice-breaker, ice field thickness is 
50 mm 

 
For the model (1) we shall suppose presence of three components (2) or (3) and 

therefore we shall solve problem (5) three times for each time window.  Frequencies clusters 
centers have been found by K-means algorithm and they are presented in the Table 1. These 
results conform to the results of general spectral investigation of time series (Ledermann, 
1984). For example, on the Figure 2 the periodogram for the time series from Figure 1a is 
presented. We can see that the result from the first string of Table 1 obtained just for this time 
series conforms to the periodogram on Figure 2. 

 

 
Figure 2. Periodogram for time series presented on Figure 1a. 



Table 1. Frequencies for the expression (1), for the model of tanker 
Ice field thickness,  
velocity of model 

Center of the 
cluster 1 
1 , radians 

Center of the 
cluster 2 
2 , radians 

Center of the 
cluster 3 
3 , radians 

25 mm, 0,1 m/sec 0.0685 1.307 1.729 
25 mm, 0,3 m/sec 0.0778 1.204 3.033 
40 mm, 0,1 m/sec 0.0677 0.37 1.1008 
40 mm, 0,3 m/sec 0.0632 0.98 1.4694 

 
Values of the statistic (8) for these 3-component expansions (1) with fixed 1 , 2 , 3  

from Table 1, are given in Table 2. Here  characterizes the percentage of unexplained part of 
the initial signal variance. 

 
Table 2. Statistics  (8) for 3-component expansions (1) 

Ice field thickness,  
velocity of tanker’s hull model 

25 mm,  
0,1 m/sec 

25 mm,  
0,3 m/sec 

40 mm, 
0,1 m/sec 

40 mm, 
0,3 m/sec 

 0.23 0.32 0.37 0.255 
 
For the electrical interference that noised ice loads signal (Figure 1a), the model (2) was 

preferred. The plot of  k  function from (2) for electrical noise is presented on Figure 3a). 
Values of  k  depends on time window starting moment, where ktstarting 10 . 

 

  
a) b) 

Figure 3. Curves for  k  (phase) in oscillatory component  tV j  for: a) electricity noise 
with 729,1  extracted from signal on Figure 1a; b) main “pitching” component with 

frequency 0655,0  extracted from signal on Figure 1b,  
 

 

Consider experiments with icebreaker’s hull model. In these experiments the model 
was towed by a trolley with velocity 0,1 m/sec (Figure 1b) through the ice field of 50 mm 
thickness. The observed signal was without noise of electrical origin. Centers i , 3,2,1i , for 
frequency’s clusters as well as values of statistics  (8) are presented in the Table 3. 

 



Table  3. Frequencies for the expression (1), for the model of ice-breaker 
Ice field thickness,  
velocity model 

Center of the 
cluster 1 

1 , radians 

Center of the 
cluster 2 

2 , radians 

Center of the 
cluster 3 

3 , radians 

 

50 mm, 0,1 m/sec 0.0655 0.1301 0.222 0.031 
 
Consider centers of clusters that are presented in the table 3. It turned out that for 

oscillatory component with frequency 1  the process (2) corresponds, and for components 
with frequencies  2  and 3  the stationary process (3) corresponds. The plot of  k  function 
for component with frequency 1  is presented on the Figure 3b. This component corresponds 
to the “core” of the process and supposedly responsible for vessel hull's rocking due to the ice 
loads (Figure 1b). 

Consider hypothesis iH 0  “the random variable i  is uniformly distributed on the 
interval  2;0 ” , 3,2i . The sample  i~  values of Kolmogorov-Smirnov statistics   are 
presented in the table 4. For the level of significance 05,0  the critical value is 36.1crit  . 
According to the values presented in table 4 we can accept iH 0 , 3,2i . So we can consider 
components with frequencies 2  and 3  as stationary processes. 

Table 4. Results for K-S test of phase i  of  tU i  stationary component 
Ice field thickness,  
velocity of ice-breaker’s hull model 

  for 2    for 3  

50 mm, 0,1 m/sec 0.4 0.67 
 

OUTCOMES 
Thus, we demonstrated the suitability of stochastic model, which is proposed in the 

article, for description of the processes that can be recorded during the tests of tankers or 
icebreakers models in the ice basin.  The sum of uncorrelated processes with a fixed 
frequencies can describe a significant part of the initial signal's variance within a time window 
of about 1 second.  

It is possible to suggest that for experiment with towing the vessel's model fixed to the 
trolley at one point we can attribute main oscillatory processes of the dynamometer signal to 
the pitching of the model due to the applied ice loads.  At the same time the variance of the 
probable response to a non-stationary ice destruction process was extremely small in a series 
of experiments with these types of models and method of their fixation.   
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