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ABSTRACT 
Navigation in ice has received substantial attention over recent decades. This increased 
attention has led to the development of numerical and semi-empirical models that characterize 
ship performance in ice. These models consider numerous parameters such as; level ice 
thickness, ridged ice thickness and ice concentration in additive fashion. However, they fail to 
account for the joint effect of the above ice features on ship speed. Moreover, the effect of ice 
compression on ship performance is usually omitted. This paper introduces probabilistic 
models, based on field observations, that predict a ship’s speed and the situations where a ship 
is probable to get stuck in ice based on the joint effect of selected ice features, such as the 
thickness and concentration of level ice, ice ridges, rafted ice, and ice compression. To 
develop the models a Bayesian Belief Network is used. The case study presented in this paper 
considers a single and unassisted trip of an ice-strengthened bulk carrier between two Finnish 
ports in the presence of challenging ice conditions and the obtained results show very good 
prediction power of the models. 
 
INTRODUCTION 
Ship performance in ice has been given a lot of attention in the recent years. This increased 
attention has led to the development of methods that estimate ship resistance in ice, see for 
example (Lindqvist, 1989; Kaj Riska et al., 1997) and tools that simulate ship transit in ice, 
see (LaPrairie et al., 1995; Mulherin et al., 1996; Su et al., 2010; Lubbad and Løset, 2011). 
These simulation tools are used in detailed evaluation of required power for a ship at the 
design stage or for predicting her performance in ice at the operational stage; however the ice 
conditions which are modeled are often limited to the level ice and ice channel. In select 
cases, the effect of ice ridges was also taken into account, see for example (Kaj Riska et al., 
1997). The effect of ice compression on ship speed has not been researched in-depth, thus it is 
usually expressed in a qualitative manner, see for example (Mulherin et al., 1996). However, a 
recent study has allowed the quantification of compression on ship performance using a 
concept of added resistance, simply produced by an ice sheet in contact with a ship’s hull, see 
(Kaups, 2012) . 
 
Most of these models evaluating ship performance are deterministic, and they require detailed 
input data in terms of ice features and ship characteristics. If such models are to be used for 
operational purposes, where the estimation of ice conditions is burdened with significant 
uncertainty and the parameters of ships are not readily available, the reliability of an outcome 
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of such modeling process can be questioned. Although the above mentioned methods have 
been utilized for optimizing shipping routes in ice-covered waters, see (Kotovirta et al., 2009), 
there are still numerous issues which need further studies, for instance: the effect of ice 
compression on ship performance, or the quantification of the joint effect of ice conditions 
(level ice, ridges, compression, the relative angle at which ice reacts on a ship) that can bring 
a ship to a halt. Moreover, suggestions have been made to move towards probabilistic models, 
see for example (Kotovirta et al., 2009).  
 
The most common modeling practice in the field is to adopt quantity-oriented models, which 
describe the relation among a set of input variables and the factor of interest. The most 
challenging task here is a proper reflection of the joint effect of ice conditions on a ship speed 
and to provide sufficiently detailed input variables. Therefore another modeling technique can 
be adopted leading to an event-oriented model, where the conditions under which an event of 
interest occurs are reflected. This type of modeling does not provide an insight into the 
physics of the process of ice breaking, but simply quantifies the joint effect of various ice 
features on ship speed and determines the most probable speed of a ship along a given route. 
The identification of areas and/or sea states that should be avoided, due to a high calculated 
probability for a ship to experience significant speed reduction could also be generated.  
There are event-oriented models estimating ship speed in given ice conditions which are 
based on the full scale measurements, but their focus is either on a single ice feature affecting 
ship speed, as the ice thickness see, (Haas et al., 1999); or the model relies on a subjective 
interpretation of existing ice conditions, based on visual observation carried out from a ship, 
see (ENFOTEC Technical Services Inc. et al., 1996). Therefore the joint effect of the relevant 
ice features on ship performance is not addressed. 
 
This paper introduces a probabilistic framework for predicting performance of a ship 
navigating in ice, meaning the probability for a ship to attain certain speed, considering the 
following parameters: thickness and concentration of various types of ice such as, level ice, 
ridged ice, and rafted ice. Ice compression and its relative direction with respect to a ship is 
taken into account as well. Bayesian learning techniques have been adopted and detailed 
records on ship movements obtained from AIS system are utilized together with the 
information on ice conditions which are obtained from the ice forecast model, called HELMI, 
which has been developed at the Finnish Meteorological Institute, see (Haapala et al., 2005). 
The structure of the model, which is developed here, and the probabilistic relations among the 
input parameters are defined by applying two learning algorithms, called PC and Naïve 
Bayes. Finally, the obtained framework has been cross-validated and the final results show 
very good convergence with the real world conditions. The obtained models and their results 
are valid for a particular ship type, which is an ice going bulk carrier with ice class of IA 
Super - see Table 1 - which is navigating under certain set of hydro-meteorological 
conditions. 
 
METHODS AND MODELS 
The approach taken towards development of the probabilistic models presented in this paper 
utilizes techniques of Bayesian learning from data. For this purpose, two learning algorithms 



were used to find correlation and causation in the data to develop probabilistic models capable 
of forecasting ship performance in ice. For the description of the algorithms and discussion 
about they usability the reader is referred to the following publications (Friedman et al., 1997; 
Cheng & Greiner, 1999; Acid et al., 2004; Darwiche, 2009). These models first determine and 
quantify the relations between all the analyzed variables and second they quantify the joint 
effects of ice features on ship speed, allowing probabilistic analysis of ship performance in 
ice, for any given ice forecast. From the engineering perspective, quantification of the joint 
effect of various ice features on ship performance is a novel approach.  
 
To develop the models, two data source were used. First the reanalyzed ice forecast for the 
sea area was taken under consideration. This dataset provides information about ice features 
for the interval of 1 hour and spatial resolution of 1 by 1 NM. Second, the database containing 
ship positions was analysed. This analysis included ship course and speed obtained from AIS, 
recorded with an interval varying between 10 sec to 3 min, depending on the speed of the 
vessel. Then, these two data-sources were matched in tempo-spatial fashion, and Bayesian 
machine learning techniques were applied to determine models’ structure and contents. The 
obtained models and their results are valid for a specific ship type, which is an ice going 
bulker with very high ice class (IA Super) - see Table 1 for ship data. 
 
Date and the area of interest 
The date and area of interest have been selected specifically to capture challenging ice 
conditions, meaning high concentration of level ice, the presence of ridged ice and ice 
compression that changes in time. For this reason,  the day of 6th of March 2011 was chosen 
and the sea area between two Finnish harbors, in the Bay of Bothnia on the Baltic Sea, called 
Vaasa and Kokkola was selected, see Figure 1. The case study presented here is based on 
records of a single trip of the bulk carrier between two positions after boarding of a pilot, 
meaning that the stage of high-sea navigation is considered, where the ship is supposed to 
proceed with full engine power. During her trip, the ship covered distance of 94 NM in 12 
hours, and the ice conditions hampered her significantly, making her ram the ice several 
times, and forced her to idle in ice for three hours. This means that the data set can be 
considered appropriate for the model development; as it contains significant variability in the 
recorded data and strong effect of environmental conditions on ship’s speed, see Figure 2. 
 

 
Figure 1. Ice chart representing ice conditions for the analyzed date and location. 
 



Ship data 
For the purposes of this study a ship navigating alone was selected, meaning she was not 
assisted by an ice-breaker nor following a convoy. The chosen ship is a general cargo ship 
having the ice class of IA Super according to Finnish-Swedish Ice Class rules. This means 
that she has such structure, engine output and other properties which make her capable of 
navigating in difficult ice conditions without the assistance of icebreakers. The design 
requirement for this ice class is a minimum speed of 5 knots in 1 m thick brash ice channels 
with a 0.1 m thick consolidated layer of ice on top, see (Transport Safety Agency, 2010). The 
ship is equipped with an “ice knife” at the bow, which additionally eases the process of ice 
breaking. In order to quantify the joint effect of ice conditions on ship speed, the following 
parameters of ship motion were retrieved from the AIS records: time, ship position, speed 
over ground, course over ground, and true heading. Then for each time step and position, the 
relevant ice characteristics were obtained from the ice forecast model. Once the ship 
parameters had been aligned with the ice forecast, one additional parameter was calculated 
allowing for the quantification of an effect of direction of compression with respect to a ship 
at a certain speed. This is called “relative direction of compression”, which is an angle 
between ship’s centre line and the resultant direction of the ice compression. This parameter is 
expressed on a scale from 0 deg (ice pressing from the bow) to 180 deg (ice pressing from the 
stern), where the value of 90 deg means that the ice compression acts perpendicularly to a 
ship. 
 
The resolution of data describing ship motion is much finer (10 sec) than the data obtained 
from the ice forecast (1 hour time interval and 1x1 NM in space), therefore a code in Matlab 
was created to extract the ice features which correspond to ship location in the given time. 
The difference in resolutions produces the variability in the value of parameters describing 
ship performance even if the modeled ice conditions remain unchanged, see Figure 2. This 
effect is removed at the stage of model development, where all variables are discretized and 
divided into classes, as required by Bayesian learning algorithm which has been applied. 
Thereby, the speed of ship has been mathematically binned into three classes as follows: 
below 5 kn, between 5 and 10 kn and above 10 kn. The variability of speed given constant ice 
conditions occurs mostly within the classes, see Figure 2. However, one important parameter, 
which describes ship’s inertia and her ability to break the ice, meaning mass of the ship 
(displacement) cannot be determined accurately. We know that the ship was steaming from 
Riga with the load of coal, and her first arrival harbor was Vaasa, where she discharged some 
amount of coal, and then she continued to Kokkola to discharge the remaining cargo. 
Unfortunately, specific load quantities of the ship are unknown, thus we made an assumption 
about half-load conditions on her arrival to Kokkola.  
 
 
 
 
 
 
 



Table 1. Ship’s data 
Type General cargo 

Ice class IAS 
DWT 21353 t 

Length 149.3 m 
Breadth 24.6 m 
Draught 9.4 m 
Power 9720 kW 

Ice data 
All the ice data used to develop the probabilistic models presented in this paper was obtained 
from the reanalyses performed with the use of the HELMI multicategory sea-ice model, see 
(Haapala et al., 2005). The HELMI model resolves ice thickness and concentration for five 
level ice categories. These categories include rafted ice and ridged ice together with the 
thermodynamics of sea-ice, horizontal components of ice velocity and internal stress of the 
ice pack; the latter refers to ice compression.  
 
Ice motion is determined by the momentum balance equation, which takes into account the 
Coriolis force, wind and water stresses, sea surface tilt term and an internal stress. The 
magnitude of internal friction is used as the principal model variable to describe compression. 
It is to be noted that the viscous-plastic rheology does not describe elastic stresses and the 
internal stress arises from the interactions of moving ice. Forces arising in a static ice are 
included by assuming a negligibly slow viscous creep. Roughly, the internal friction term can 
be interpreted to describe the forces arising when ice floes are pushed and sheared against 
each other, or broken and heaped into ridges. Thus it is a good descriptor for the interaction 
between dynamical ice cover and an ice-going ship. This manifests as ice forces against the 
ship hull and as closing of channels, or other phenomena that navigators associate to 
compressive ice conditions.  The internal friction magnitude has typical values ranging from 0 
to 10 N/m2. The magnitude, possibly scaled to semi-empirical compression numeral 0-4, acts 
a proxy for ice compression. However, to estimate the actual local forces additional scaling 
arguments must be taken into account such as floe size and other ice cover geometry. 
The HELMI model was discretized in a c-crid and in curvi-linear co-ordinates. The grid has 
415 nodes from west to east and 556 nodes from south to north.  The SW lower corner 
coordinates are 16.72 E 56.74 N, NE corner coordinates 30.48 E 65.99 N and the increment is 
1/30 degrees eastwards and 1/60 degrees northwards. This is approximately 1 NM in both 
directions at 60N latitude. The model was forced by the HIRLAM regional weather model 
forecasts or reanalyses of winds and air temperature. The length of forecast is 54 hours and 
interval 3 hours, while reanalyses are stored at 1 hour intervals. The present set-up of the ice 
prediction system doesn't include any dynamical ocean component, thus ocean currents are 
neglected. Sea surface temperature is prescribed and updated once a day and thus an ice edge 
is very much controlled by this procedure. Ice forecasts have been validated against the 
observed ice situations. 
 
 
 
 



Bayesian learning from the data 
In this section we describe the learning process from the data resulting in the development of 
the probabilistic, event-oriented models estimating ship performance in ice. An event-oriented 
model reflects the ice features under which ship’s speed changes or a ship gets stuck in ice. 
These types of models are able to quantify the joint effect of various ice features on ship’s 
speed, which in turn make it possible to determine the sea areas which should be avoided as a 
ship may experience significant speed reduction there. The analyzed datasets, representing 
speed of ship navigating in changing ice conditions are illustrated in Figure 2, whereas the 
correlation matrix for the variables describing ship performance and ice conditions is depicted 
in Figure 3.  
 
To extract knowledge form the available datasets, we applied a Bayesian Belief Network 
(BBN) which suits the purposes, being a renowned technique for transferring data into 
knowledge in the presence of uncertainty or limited information and for drawing inferences 
based on that knowledge. Moreover the BBN and its learning techniques make it possible to 
combine the knowledge extracted from the data with the existing background knowledge and 
understanding of the analyzed phenomena and relations between certain factors. This is 
realized at the stage of definition of the model’s variables, where the relations between 
variables can be specified, meaning forced or forbidden. Moreover the temporal order of 
variables can be defined at this stage, meaning that the BBN, to some extent, is able to capture 
also dynamics of a system that has been analyzed. Two ways of learning Bayesian networks 
are in use: Constraint Search-Based Learning (CSBL) and Bayesian Learning (BL). In the 
first case, an algorithm searches the data for independence relations to determine the causal 
relations, and in the second case the space range of models is searched over and each model 
found is scored using the posterior probability of the model given the data, and the model 
which gets the highest score is adopted, see for example (Cooper & Herskovits, 1992; Spirtes 
et al., 2000). In this paper two learning algorithms were utilized and their results compared. 
The first algorithm called “PC” belongs to the CSBL group and the second called Naïve 
Bayes (NB) represents the BL group. The models are developed with the use of software 
package called GeNie, which is a versatile and user-friendly development environment for 
graphical decision-theoretic models, see (Druzdzel, 1999). Moreover it offers a wide range of 
learning algorithms, depending on available data and model requirements. 
 



 
Figure 2 The time series of analyzed parameters 

 
Figure 3. The correlation matrix for all analyzed variables. 

MODEL DEVELOPMENT 
Model development is an iterative process, where at the first step a version of a model is 
obtained by adopting a learning algorithm. At the second step, the obtained model is cross-
validated and if it passes the test it is stored, otherwise the process returns to the step one.  
 
The analyses performed in this study have failed to deliver a single unified model, which 
simultaneously predicts the speed of the ship and situations where a ship gets stuck in ice. For 
all the cases analyzed, models which were obtained provided good prediction for either of 
these events but never for both of them. Therefore, two separate models been developed and 
are presented in the following section, one predicting each event. The models are obtained by 
applying two different types of learning algorithms (PC and NB), which were found the best 
for a given purpose; this means that the structure of the models is different. The first model 
predicting the ship speed, called model A – see Figure 4 - considers the causality discovered 
in the data; whereas the second model, called model B – see Figure 5 - disregards the 
causality, and searches for the best fit to determine the relations between the situations where 
ship is stuck in ice and the surrounding ice conditions.  
 



Since the model A is rather complex – see Figure 4 - it encompasses 12 variables, which are 
connected with 29 arcs, having in total 29 states, thus producing large number of parameters 
(4415), it is impossible to illustrate all of them in the paper. Consequently, the description and 
presentation of the models is limited to its qualitative part – model structure – only, see 
figures 4 and 5.  

 
Figure 4 A probabilistic model predicting ship speed in ice, developed with the use of PC 

learning algorithm and incorporated background knowledge (model A). 

MODEL VALIDATION 
Bayesian Networks offer a wide variety of tests and analyses to validate the model, see for 
example (Pitchforth & Mengersen, 2013). One of the tests is the cross-validation the part of 
the data is used to learn the network, and a part to validate it. It tends to answer the question 
about the predictive power of a model with respect to a selected hypothesis, which is 
tantamount to evaluating the probabilities for false positives (FP) and false negatives (FN) for 
a two-state variable. Another test is the model behavior analysis addresses the following 
question: does the model behavior predict the behavior of the system being modeled? It is 
usually done by an analyst who performs the scenario walk-throughs and checks whether the 
model prediction is consistent with the existing knowledge about the physics of the 
phenomena which is being analyzed and the general knowledge and understanding of the 
modeled system. The results of cross-validity analyses carried out for the models presented in 
this paper are shown in tables 2 and 3. The model A features good prediction power, which is 
expressed as the probability of delivering the right answer by the model, which for the 
variable ship speed varies between 0.75 and 0.93, and it depends on the state of the variable, 
see Table 2.  
 



 
Figure 5 A probabilistic model for predicting a ship getting stuck in ice, developed with the 

use of Naïve Bayes learning algorithm (model B). 
 

In the case of the model B, its predictive power is even higher, 0.9 and 1.0 depending on the 
hypothesis adopted, see Table 3, as the variable of interest (ship stuck in ice) has two states. 
The conclusions which can be drawn from the presented cross-validation analyses, consider 
the quality of prediction, which varies depending on the hypothesis, as presented in tables 2 
and 3. Considering the model B, if we allow the following hypothesis: the ship will get stuck 
in ice, then the probability for the model to deliver the right prediction is 1 and the probability 
of false prediction (false positives – FP) in this case is 0. However, if the alternative 
hypothesis is adopted, meaning: the ship will not get stuck in ice, then the probability for the 
model to deliver the correct response is 0.9 and there are 10% chances for the incorrect 
prediction (false negative – FN). With this analysis the FP and FN are quantified, and the 
predicting power with the respect to given hypothesis is evaluated. 
 

Table 2. Results of the cross-validation of the model A 
 Ship’s speed [kn] 

A
IS

 d
at

a 

Obtained from the model 
 Below 5 Between 5-10 Above 10 
Below 5 0.78 0.22 0.00 
Between 5-10 0.21 0.75 0.04 
Above 10 0.01 0.06 0.93 

 
Table 3. Results of the cross-validation of the model B 

Ship stuck in ice [yes/no] 

A
IS

 d
at

a 

Obtained form the model 
 No Yes 

No 0.90 0.10 
Yes 0.00 1.00 



 

 
Figure 6 Models’ predictions versus AIS data. 

DISCUSSION 
In Figure 6 the results of cross-validation are visualized, and the following is found: 
 
Model A 
It tends to overestimate the modelled parameter for the certain classes of output variable. For 
the lowest speed category (below 5kn) the model classifies wrongly 22% of the cases, 
assigning it to the higher speed category (between 5-10kn), see Table 2. This means that the 
model may deliver results that are too optimistic for a ship. In other cases the model tends to 
underestimate slightly the ship’s speed. The accuracy of the model is 78%, 75% and 93% for 
the lower, medium and highest speed categories respectively. The model has problems with 
proper estimation of the speed category in the locations where ship speed fluctuates 
significantly, whereas the ice conditions do not change much. This may bring to conclusion 
that in certain areas the ship was slowing down deliberately, or the ice data obtained from 
HELMI model significantly differs from the real conditions. For the presented set of variables 
the accuracy higher than 78% for the lowest speed category cannot be attained. 
 
Model B 
The predictive power with respect to hypothesis stating that the ship gets stuck, is very high 
whereas in the case of alternative hypothesis it is burdened with some inaccuracy, meaning 
that the model predicts more cases of ship being stuck in ice than obtained from the records. 
We found two reasons for this, first is that the model tends to classify the cases in which the 
ice conditions are challenging and the ship’s speed drops below 4 kn as “ship stuck in ice”, 
which in the reality is not always the case. According to the recorded data, in some instant of 
time the ship’s speed dropped dramatically from 8 kn to 3 kn, marked in Figure 6 as “speed 
drop”, however the ship managed to speed up and continue for some time before she 
eventually stopped. The second reason is the effect of ice channels on ship’s speed, meaning 
that the model predicts the ship being stopped in ice where she is still underway. However 
this type of navigation was rather minor, as a significant level of compression was observed, 
and the ice channels could not remain open for a long time. 
 
 
 



CONCLUSIONS 
In the presented paper we have introduced two probabilistic models predicting ship 
performance in ice, meaning ship’s speed and the situations where a ship is probable to get 
stuck in ice. The models feature two novelties, first they considered the joint effect of various 
ice features on ship performance, and second ice compression has been taken into account. 
The models were developed with the use of the techniques of Bayesian learning from real 
world data.  
 
Notwithstanding all the assumptions, the results obtained from the presented model are 
promising as they can help to understand the joint effect of ice features on ship speed in 
addition to the process and conditions associated with ships getting stuck in ice. The models 
developed can be further used for ship track analysis. They could be used to determine the 
probability that a ship will attain a certain speed class or to specify the areas where she may 
get stuck in ice, especially important in the case, where assistance of an ice-breaker is not 
available immediately. The models can also quantify the effect of each single component 
describing the ice cover on ship speed, pointing out the most relevant ice features.  
 
It should be noted, that the existing models are valid only for a specific ship type (ice going 
bulk carrier), and the specific ice hindcasting model (HELMI). Further work should focus on 
incorporating ships of various types and ice classes to the model. 
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