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ABSTRACT 
Axially symmetric steady solutions of equations describing ice drift under the influence of 
cyclonic and anticyclonic wind vortex are constructed and analysed in cases when the ice has 
elastic-plastic rheology and viscous-plastic rheology. In both cases the solution consists of the 
ring where the ice is in the plastic state, and the inner kernel and outer ring where the ice 
stresses are located inside the yield curve. Natural boundary conditions in the origin, at the 
plastic ring boundaries and on the periphery of the outer ring are formulated. Elastic-plastic 
solutions satisfying boundary conditions are constructed and analysed in case of cyclonic and 
anticyclonic wind vortexes. V viscous-plastic solutions have singularity in the origin in case 
of anticyclonic wind. In case of cyclonic wind the ice thickness grows exponentially at the 
periphery of the outer ring and the angular velocity of ice drift tends to constant value. 
 
 
1. INTRODUCTION 
Modelling of large scale dynamics of drifting ice is based on the consideration of drifting ice 
rheology at scale of several tens kilometres and greater. Since experiments are not possible at 
such scale the rheological properties are formulated using intuitive ideas, results of field 
measurements and analysis of satellite data. Model with elastic-plastic rheology were 
considered during AIDJEX (see, e.g., Coon et al., 1974), and model with viscous-plastic 
rheology was formulated by Hibler (1979). Both of the models use normal flow rule with 
closed yield curve transforming in self-similar manner depending on the ice thickness and 
compactness. In the elastic-plastic model the ice is considered as an isotropic elastic 
continuum when the stresses are inside the yield curve. In the viscous-plastic model the ice is 
modelled as a compressible viscous continuum when the stresses are inside the yield curve.  
 
In the viscous-plastic model the rest is not steady solution of the full set of governing 
equations including the laws of mass and momentum balance and rheological equations. The 
reason is related to the pressure existing in rheological equations even when the stresses are 
located inside the yield curve. The pressure tends to zero for relatively small thickness or 
compactness of the ice. In the elastic-plastic models the rest performs stationary solution in 
case when external drag forces and boundary forces are absent. Although the elastic-plastic 
models look more realistic physically their numerical realisation is more complicated because 



of the high speed of elastic waves. Analysis of explicit solutions of the models could 
demonstrate the difference of modelling results of ice movements in the same conditions 
when the elastic-plastic and viscous-plastic models are used. 
 
Axially symmetric solutions of equations describing drift of floating ice with elastic-plastic 
rheology were studied by Schwaegler and Pritchard (1980) numerically for the validation of 
rheological characteristics of drifting ice in the Arctic and for the investigation of quasi-
steady-state response of an axisymmetric ice model driven by a prescribed atmospheric high-
pressure system. They determined that the quasi-steady-state response of ice disk with 
diameter 1000 km is established within six hours of the initial air stress application, regardless 
of the initial conditions. The study indicated that a purely elastic response occurs for ice 
strengths approaching the magnitude of 32 kN/m for the conditions considered. Lepparanta 
(2005) investigated steady axisymmetric solutions of ice drift equations with viscous-plastic 
rheology for the modelling of zonal ice drift in the Antarctica. The momentum balance 
equations were performed in spherical coordinates on   plane to take into account variations 
of Coriolis parameter with the longitude. It was shown that rigidly rotating polar cap should 
exist near the pole to avoid singularity in the ice thickness.  
 
In the present paper axially symmetric and steady solutions including both plastic and elastic 
regions in the elastic-plastic model and plastic and viscous regions in the viscous-plastic 
model are constructed and analyzed. In the second section of the paper the statement of the 
problem, model equations with boundary conditions and main assumptions are formulated. In 
the third section the stress distribution inside plastic regions of axially symmetric solutions 
are analyzed. In the fourth and fifth section stress and strain distribution in elastic-plastic and 
viscous-plastic solutions are discussed. Results of numerical simulations of steady ice drift 
under cyclonic and anticyclonic wind vortex are performed in the sixth section. Main study 
results are formulated in the conclusions. 
 
2. STATEMENT OF THE PROBLEM, MODEL EQUATIONS AND ASSUMPTIONS 
Momentum balance equations describing steady axially symmetric motions of drifting ice are 
written in the form 
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where rr ,   and  r  are the components of ice stresses in polar frame of reference r  and 

  (positive variations of the angle   are in clockwise direction),  is angular component of 

ice drift velocity, 
v

i and  are the density and the thickness of the ice cover, h A  is the ice 

compactness,  is the Coriolis parameter and  is the absolute drag force applied to the ice 

by wind and water. In the Northern Hemisphere the Coriolis parameter . Further the 

angular velocity 

f F

0f
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It is assumed that radial component of the ice drift velocity equals zero and the equation of 
mass balance is satisfied explicitly. The ice stresses rr ,   and  r  are located inside or 

belong to the yield curve (YC) described by the equation  
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where 212  I , 212  II , and 1  and 2  are maximal and minimal principal 
stresses.  
 
Strain rates are calculated from the normal flow rule when the stresses belong to the YC: 
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where , 21 eeeI  21 eeeII  , and  and  are maximal and minimal principal strain rates. 

Further we consider solutions family with 
1e 2e

 rr . In this case   rrI  and 

 r II  .  

 
In most of models of sea ice dynamic the YC has a shape of closed curve located in the region 
of positive pressure ( 0 I ) (Fig. 1). Displacement of a part of the YC into the range of 
positive stresses is associated with the resistance of sea ice cover for the extension or sea ice 
cohesion. Typically it is assumed that the cohesion is much smaller than yield stresses under 
the compression. The diameter of the YC depends on the ice thickness and the ice 
compactness. Normal flow rule (4) sets that plastic deformations are accompanied by an 
extension ( ) when the pressure is located between the points OM and OC, and by a 

compression ( ) when the pressure is located between the points OM and O (Fig. 1a). The 
point OM is associated with the centre of the Mohr circle Ms having tangential point with the 
YC performed on the Mohr plane 

0Ie

Ie 0

),( nn   (Fig. 1b).  Pure shear plastic deformations are 

available only when the stresses are performed by this Mohr circle. 
 
Mapping of the YC from the plane ),( III   on the plane ),( nn   is available only for those 

segments of the YC where 1I/II dd . In this case it is possible to construct the envelope 

of Mohr circles on the plane ),( nn   associated to the points of the YC on the plane 

),( III  . Points of the YC where 1/ III dd   are associated with concentric Mohr circles 

on the plane ),( nn  . For example, points located on the YC between the points A45 and A-45 

in Fig. 1a) are associated with Mohr circles located inside the Mohr circle M45 in Fig. 1b. 
Mohr circle related to the point O on the plane ),( III   in Fig. 1a is shrunk to the point O in 
Fig. 1b. 
 
The shape of the YC is changed in self-similar way when ice thickness and compactness are 
varied. Thus the coordinate of the point OM denoted as max , maximal shear stress max  and 

the coordinate of the point O denoted as P  can be expressed by the formulas    
PK max , PK max ,  )1(exp AChPP   ,                                  (5) 

where  and  are the coefficients determined by the shape of the YC, and K K P  and  are 

constants. 

C

 
Further we consider YCI used by Pritchard (1975) and YCII used by Hibler (1979). The YCI 
and YCII are described by the equations 
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kPa 5P , , 20C 2e .                                                              (8) 
Coefficients  and  are introduced by the formulas K K
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The upper parts of the YCI and YCII are shown in Fig. 2a when m 1h  and 1A .  
 

 
Figure 1. Qualitative shape of the Yield curve used in models of sea ice dynamics on the 
plane ),( III   (a) and on the Mohr plane ),( nn   (b). 

 
It is assumed that the thickness  of continuous ice can increase only under the ice 
compression due to the ridging, while the ice extension causes only the decrease of the ice 
compactness 

h

A . The compression influences the increase of the ice compactness when 1A . 
The ice thickness is a constant in two last cases. Thus each of the YC can be performed as a 
yield surface (YS) in the space ),( hI , II  or ),,( AIII  . Fig. 3 shows the YSI and YSII for 
the ice with initial thickness . Each vertical cross-section of the YS by the surface 

 or  performs the the YC of the ice with 
m 1h

m 10  hh 10  AA 0hh   and 1A  or m 1h  

and .  0AA 
 
Pure shear deformations of the ice cover are possible when the ice stresses belong to the 
critical line in the plane ),( hI  when 1A  or to the critical line in the plane  ),( AI  by 

1A . The conception of critical line was introduced by Collins (1990) for wet soils with 
density dependent yield criteria. The equation of the critical line follows from the condition 
 
 0/ III ddσ  ,                                                                                 (11) 
 
where the stresses I  and II  belong to the YS.  
 
The critical lines (CL) of the YSI and YSII are described by the equations 
 3/2PI  , (CLI)                                                                          (12) 

2/PI  .  (CLII)                                                                         (13) 
CLI and CLII are shown in Fig. 2b. It is visible that the CL’s almost coincide with the axis 

0I  when . In this case the YC’s shrink to the origin at the plane 7.0A ),( III  . It 
means that ice stresses are very small, and the ice cover drifts only under the influence of 
wind and air drag forces, i.e. the ice drift is free when 7.0A . 3D shape of the Yield surface 
I is shown in Fig. 3a on the plane ),( hI  with an extension on the plane ),( AI . 



 
Figure 2. Yield curves I and II (a). Critical lines on the YCI and YCII (b).  

                   
 

a) b) 
Figure 3. Yield surface I (a). Configuration of elastic and plastic regions in the steady 
solution: inner kernel (K), plastic ring (PR) and outer ring (R) (b). 
 
Drag force  is equal to a sum of wind ( ) and water ( ) drag forces F aF wF

2
aaaa AVCF  ,   2rACF www  ,                                          (14) 

where a  and w  are air and water densities,  and  are air-ice and water-ice drag 

coefficients; 
aC wC

1  for anticyclonic wind vortex  ( ,0aV 0 ), and 1  for cyclonic 

wind vortex ( ,0aV 0 ). The angular component of wind velocity  is given as a 

function of the radius. It is assumed that the function  is of the same sign when 

, and V hen 
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)L,0(r 0  w)(ra Lr  here constant , w L  denotes the radius of the wind vortex. 

Angular velocity (r)  ce motion should be found from the solution.   of the i
 
Representative numerical values of physical constants used for estimations are given in   
Table 1. Values of the drag coefficients  and  are equal to representative vales used in 

large scale models of sea ice dynamics (Lepparanta, ). Coriolis parameter  is calculated for 
the Polar region. It is assumed that representative horizontal scale 

wC aC

f
L  is related to typical 

radius of of the wind vortex, which is about 100 km or greater.  
 
Further we consider a family of steady solutions consisting of the kernel (K) by , 

the ring with plastic axially symmetric shear flow (PR) by 

),0( kRr
),( rk RRr  and the outer ring (R) 



by  where the ice cover is in the rest (Fig. 3b). Inside the PR the angular velocity 

is a function of the radius 

),( 0RRr r
)(r   and should be constructed from the solution. In elastic 

plastic models of drifting ice (Coon eta al, 1974) the kernel K and the ring R are associated 
with elastic state of the ice. In the viscous-plastic model (Hibler, 1979) the kernel K and the 
ring R are associated with pure viscous state of the ice. In both cases the ice stresses in the 
regions K and R are located inside the YS, and the ice stresses in the plastic ring PR belongs 
to the critical line. 
 

Table 1. Representative numerical values of physical constants 
, kg/m3

wC  aC  f , s-1 L, km Va,m/s h,m A, kg/m3 
w , kg/m3 i a

920 1020 1.27 0.005 0.002 1.454 10-4 100 10 1 1
 
Boundary conditions set the continuity of the stresses rr  and  r  through the circles kRr   

and  rRr 
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Since the ice in the origin is not confined it is assumed that  
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3. STRESSES IN THE PLASTIC RING 
The ice motion in the PR is performed by pure shear deformations, when  and 0Ie

0/  IYf  . The second formula (4) is used for the finding of the coefficient   which 
should not be negative. In this solution the angle between slip lines is equal to 90o. The first 
family of slip lines coincides with concentric circles and the second family is performed by 
radial lines;  rr  since normal stresses should be the same on both slip lines passing 

through the same point.  
 
In the PR the stresses belong to the Mohr circle Ms (Fig. 1b) and expressed as follows 
 PKrr   , PKr  , ),( rk RRr .                             (18) 
Substituting formulas (19) into equations (1) and (2) we find  
  drdPK rhAfi  / ,                                                                  (19) 

  FdrdPK  2/ rPK / .                                                              (20) 

From equations (19) and (20) the angular velocity is expressed as follows 
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Using values from formulas (8)-(10) and Table 1 we find estimates 
/(mkg 3.1 422 aawaw VCC ,                                                                             (22) 
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Therefore  with accuracy to high order terms in range where the wind 

velocity is about 10 m/s. In formula (21) the sign “+” in front of term 

aaww VCC 

  should be used 



since the wind velocity and the velocity of ice drift should have the same direction.  As a 
result solution (21) can be approximated by the formula 

 )/(5.0 wwaaa CCVr   .                                                           (25) 

Thus maximal ice drift speed in the PR is smaller in two times the free drift velocity estimated 
from the balance of the drag forces 0 wa FF . 

 
From the second formula (22) follows that the determinant   is positive when  

 ,  22
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Estimates (23) and (24) show that condition (26) can be satisfied in the range  when 

wind velocity  is finite in the vicinity of the origin and by 

),( 21 rrr

aV Lr  . In this range condition 

 is satisfied, and the plastic ring boundaries 02 crV kRr   and rRr   belong to this range as 

well. The angular velocity   should be positive in case of anticyclonic wind vortex ( 1 ) 
and negative in case of cyclonic wind vortex ( 1 ). 
 
Integration of equation (20) with 1A  and using formula (25) leads to the formula 
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where  by . Integration of equation (20) from 0hh  kRr  1A  to 1A  with  

leads to the formula 
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From formula (28) follows that the ice thickness   and the ice compactness h A  increase with 
the decreasing of radius r  in anticyclonic wind vortex. In cyclonic wind vortex the situation 
is opposite. Function  when 06.0) F (AA 7.0A . In this range very small changes of the 
integral from the wind velocity in (28) can cause fast drop of the ice compactness to zero. 
Formula (21) shows that the angular velocity   can be equal to zero inside the range where 

 when 0 0  (cyclonic wind), and it is always greater zero inside the range where 0  
when 0  (cyclonic wind). It explains further described effect of the transformation of 
elastic-plastic solution with rotating elastic kernel to pure elastic solution with rotating elastic 
kernel and plastic ring of zero thickness when maximal wind speed drops to a critical. 
 
4. STRESSES IN THE ELASTIC-PLASTIC SOLUTION 
The elastic kernel rotates with constant angular velocity ek . Ice stresses inside the elastic 

kernel can be performed as a sum of the stresses expressed through the stress function 
 ,                                                (29) rCrBrrAAU lnln 0
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and the stresses accounting the drag forces. Constants  and  are equal to zero since the 

stresses are limited at the origin. Constants  and  are found from the boundary 

conditions (15) and (17). Finally the stresses are expressed as follows 
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where  is the value of ekP P  at . Functions  and are calculated with the 

formulas 
ekRr  )(rfek )(rgek

),0()( rfrfek  , ,                                                     (32)   
r

ek drArrrg
0

42)(


2

1

222
21 ),(

r

r

a drrAVrrrf .                                                                         (33) 

The ice drift velocity is equal to zero inside the elastic ring, and the ice stresses are expressed 
by the formulas 

errr PK  , ,                                                           (34) ),( 0RRr er
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where  is the value of  at  and erP P erRr  ),()( rRfrf prer  . Substituting formula (31) into 

the second boundary condition (15) we find formula for the calculation of inner radius of the 
plastic ring  ekR
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4. STRESSES IN VISCOUS-PLASTIC SOLUTION 
In the viscous kernel and viscous ring the radial velocity of the ice drift is equal zero, and 
angular velocity   depends on the radius r . Therefore strain rates are determined according 
to the formulas 
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Hibler’s (1979) viscous stresses in the ice are expressed by the formulas 
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where .  Substituting formulas (38) in equations (1) and (2) we find s105.2 8
 rhAfdrdP i 2/  ,                                                                      (39) 
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Equations (40) and (41) determine variations of   and P  inside the viscous kernel by 
 and inside the viscous ring ),0( vkRr ),( 0RRr vr . 

 
At the boundary between the viscous kernel and the plastic ring normal stress rr  and shear 

stress  r  should be continuous 
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Similar conditions are valid at the boundary between the plastic ring and the viscous ring 
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Conditions (41) and (42) set up the continuity of the ice thickness or the ice compactness in 
the points  and .  vkRr  vrRr 
 
It is assumed that the angular velocity is finite at the origin and continuous at the boundary 
between the viscous kernel and the plastic ring  
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Second condition (43) means that the angular velocity at the boundary between the viscous 
kernel and the plastic ring satisfies formula (21). The angular velocity is zero at the outer 
boundary of the viscous ring  
 0lim
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Substituting the expression of  from equation (39) into equation (40) we find drdP /
    FdrdrfhAPdrrPd i

1222 /23/  .                          (45) 

Near the origin and at the periphery of the viscous ring the wind velocity is small and the right 
part of equation (45) is approximated by the formula wFF  , where the water drag force  

is determined by formula (14). 
wF

 
Numerical analysis of equations (39) and (40) combined with the analysis of equation (45) by 

1A  shows that in anticyclonic wind the solution has the following asymptotic in the origin 
 , consth  r , , 02 r drrd / , .             (46) 0r
Therefore the first boundary condition (43) is not satisfied and the viscous kernel can’t be 
extended to the origin. In case of cyclonic wind the solution at the periphery of the viscous 
kernel has asymptotic 

 , ,  ,                              (47) 
2

00 ' re  
2

0
rehh   Pfi /0

where constants 00  , 0'0   and  are determined by the solution inside the plastic 

ring. Therefore boundary condition (44) is not satisfied at the outer boundary of the viscous 
ring. 

00 h

 
6. RESULTS OF NUMERICAL SIMULATIONS  
Numerical simulations were performed with 1A  and wind velocity 
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where L  is the radius of the wind vortex, and  is the maximal wind velocity in the vortex.   maxV

 
Substitution of formula (48) into (33) leads to the formula 
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where . 2
max185.0),0( VLf 

 
Pure elastic solution of the problem exists when 0e  and maximal shear stress II  is 

located inside the YK. Compressive stress I  satisfies to the condition 

. Thus shear motion of the ice cover is absent when  PfC IIaa /13 22
max

22  
PKfCaa 


 max , and develops when PKfCaa max . Conditions for the limit equilibrium 

PKfCaa  max  are formulated as follows 

 PKrfC ekaa  )( ,  0/)( drrdfek .                                              (50) 

Numerical solution of equations (50) gives the estimate 

 , Lrr cr 88.0 )/(76.4max LCPKVV aacr  .                       (51) 



 
Figure 4. Radial distribution of the ice velocity  (a,c) and the ice thickness (b,d) in 

anticyclonic ice vortex constructed with maximal wind velocity  (a,b) and 

 (c,d). Radius of the wind vortex is 

v

200

m/s 15max V

m/s 6max V km L and the ice thickness . m 3, ekprh

 

 
Figure 5. Radial distribution of the ice velocity  (a) and the ice thickness (b) in anticyclonic 

ice vortex constructed with maximal wind velocity 
v

m/s 20max V , the radius of the wind 

vortex and the ice thickness km 400L m 2, ekprh .  

 
Graphs in Fig. 4 are constructed with the anticyclonic wind vortex of the radius 

and the ice thickness km 200L m 3, ekprh . Graphs in Fig. 4a,b and Fig. 4c,d are 

constructed with m/s 15max V  and m/s 6max V

r

 respectively. One can see that the angular 

velocity of the anticyclonic ice vortex tends to different from zero value when  decreases, 

and there is discontinuity of ice drift velocity at 
maxV

prR . The dependence of the ice thickness 

from the polar radius inside the elastic kernel is not unique. Fig. 4b shows linear distribution 



of ice thickness over the elastic kernel. The stresses inside the elastic kernel are inside the 
Yield curve (6). In Fig. 4d the ice thickness is equal to  inside the elastic kernel. From 

Fig. 8b follows that the ice thickness in the origin exceeds the ice thickness at the boundary of 
the elastic kernel due to the Coriolis force action. Fig. 4c shows the existence of discontinuity 
in the drift velocity at the outer boundary of the plastic ring by 

erprh ,

prRr  . Figure 5 shows the 

characteristics of anticyclonic ice vortex constructed for the wind vortex with , 

 and ice thickness 

m/s 20max V

km 400L m 2, ekprh . The width of the plastic ring reaches 119.19 km. 

Fig. 5a shows the existence of discontinuity in the drift velocity at the outer boundary of the 
plastic ring by . Fig. 5b demonstrates significant drop of the ice thickness over the PR 

from  at 
prRr 

m r2, ekprh ekR  to cm 42, erprh  at prRr  . Since the ice thickness can not drop 

below the thickness of ice formed by thermal growth (1.5-2 m) this effect should be 
reformulated by the reduction of the ice compactness. It could explain the lead opening at the 
periphery of the anticyclonic vortex.  Fig. 5b demonstrates significant increase of the ice 
thickness in the origin due to the Coriolis force action. 

 
7. CONCLUSIONS 
Equations describing axially symmetric motion of the ice cover with elastic-plastic 
rheologyand viscous-plastic rheology were formulated. Axially symmetric solutions of the 
equations were constructed and analysed in cases when the ice drift is exited by cyclonic or 
anticyclonic wind vortex. All constructed solutions include the plastic ring with pure shear 
motions of the ice. In the elastic-plastic solutions the plastic ring is located between the inner 
elastic kernel and outer elastic ring. Natural boundary conditions are satisfied in the origin and 
at the periphery of the elastic ring. In the viscous-plastic solutions the plastic ring is located 
between the inner kernel and outer ring with pure viscous state of the ice. In case of 
anticyclonic drift the drift velocity has singularity in the origin, and in case of cyclonic drift 
the angular drift velocity tends to a constant with the increase of the radius of the viscous ring. 
The ice thickness increases exponentially with the increase of the radius of the viscous ring in 
case of cyclonic ice drift. The influence of the Coriolis force influences the increase of the ice 
thickness from the periphery of the plastic ring to the elastic kernel in anticyclonic ice vortex. 
The ice thickness in the plastic ring is changed in opposite direction in case of cyclonic ice 
vortex. This effect can influence the lead opening in case of anticyclonic wind vortex and the 
ice ridges buildup in case of cyclonic wind vortex at the periphery of the plastic ring.  
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