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ABSTRACT  
The behaviour of ice in crushing is complex and of high relevance for safe design and 
deployment of structures in Arctic waters.  To work towards understanding this important 
issue, a constitutive model for ice in compression was developed, using damage mechanics as 
its basis.  The damage mechanics in the model utilizes Schapery’s approach, which is in turn 
derived from nonlinear viscoelastic theory.  The model is used to calculate a damage 
parameter for ice as a function of stress history which accounts for the effects of 
microcracking, pressure melting and softening, as well as viscoelastic aspects.  The model 
was implemented using a user material subroutine (VUMAT) in the Abaqus/Explicit finite 
element modeling (FEM) software; explicit FEM offers a better capability for capturing high-
speed failure events.  For validation, FEM results were compared to medium-scale indentation 
test data from the Hobson’s Choice program, as well as an earlier implementation of a similar 
constitutive model in Abaqus/Standard.  Good agreement with the earlier results was 
achieved.  Finally, code for element deletion was added to the VUMAT, to simulate the 
extrusion of crushed ice.  Runs with this code modification showed that element deletion in 
the top contact layer (analogous to the extrusion of crushed ice) produced load drops 
consistent with the loading seen in compressive ice failure events. 

INTRODUCTION 
Ice is a naturally occurring material that is unique and complex in its mechanical properties.  
Its mechanical behaviour can be described as viscoelastic, with rate-dependent responses to 
stress, including creep.  Under certain conditions, sudden load drops are seen in experimental 
testing of ice in compression.  Among other things, this is relevant for the phenomenon of ice 
induced vibration, which is of potentially high relevance to structure design for Arctic 
development.  Proposed contributors to ice-induced vibration and load drops include the 
formation of high pressure zones (hpzs), pressure melting and recrystallization (Jordaan, 
2001).  These are small scale events that result in large-scale physical consequences, and so 
must be considered and understood for effective probabilistic risk assessment and safe design 
of structures subject to ice loading.  The constitutive and numerical modeling discussed in the 
following is an effort to capture the observed behaviour of ice and work towards more 
accurate probabilistic modeling of ice behaviour for critical applications.   
 
THEORY 
Damage Mechanics 
The pioneering work in damage mechanics came from Kachanov (1958) as a way to express 
the effect of microcracks and voids on material strength.  Kachanov’s damage parameter is 
expressed in terms of nominal section area A0 and damaged area A: 
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giving an expression for effective stress σa: 
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for applied load P and applied stress σ.  Assuming the strain response is not otherwise 
modified, this implies an effective elastic modulus E for undamaged modulus E0: 
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Budiansky and O’Connell (1976) analysed the effect of microcracking on elastic moduli in 
terms of a damage parameter, a function of crack density and crack surface radius.  Other 
work on crack-based damage mechanics was done by Horii and Nemat-Nasser (1983) and 
Kachanov (1993).  Krajcinovic (1989) provides a comprehensive review of various damage 
mechanics formulations. 
 
Schapery (1981, 1991) devised an unbounded damage parameter (as opposed to the bounded 
parameters starting with Kachanov (1958)) and a damage based model for viscoelastic 
materials.  Schapery’s model was based on the correspondence principle and the modified 
superposition principle.  The modified superposition principle, for nonlinear materials in 
general, is given by Findley, et al. (1976) as: 
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for a linear compliance function D(t) and reference elastic modulus ER; τ is a dummy variable 
of integration.  ϵ0, referred to as pseudostrain, can be defined in terms of complementary 
strain energy Wc:  
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for relaxation function E(t); the integral gives σ(t) for the general case of linear viscoelasticity. 
 
For materials subject to distributed damage, pseudostrain can be a function of a set of damage 
parameters Si representing multiple structural change mechanisms in the material, along with 
stress σ.  Schapery (1981) used the following for quasistatic microcracking and a cracking rate 
following a power-law in stress: 
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with empirical constants r and q, enhancement factor g(S), and the function f1 determined by 
crack tip material conditions.  



 
 
Ice-specific modeling 
A damage model based on Schapery’s work, using two terms for distinct physical damage 
sources, was proposed by Jordaan et al. (1999): 
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for pressure p and von Mises stress s with reference stress σ0; the power law exponent q1 has 
an assumed value of 5 for the testing covered by this document, to be consistent with 
subsequent work (Xiao and Jordaan, 1996; Xiao, 1997; Jordaan et al., 1997, 1999; Li, 2002). 
S1 corresponds to microcracking and dominates at low confinement pressures.  S2 relates to 
pressure softening, dynamic recrystallization and pressure melting, and dominates at high 
confining pressures.  S2 as an exponential term (as opposed to a second power law term) 
comes from experimental observations of runaway softening in ice (Jordaan et al., 1997, 
1999).  f1 and f2 are defined in terms of pressure p as: 
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also from Jordaan et al. (1997, 1999).  For the general case of a viscoelastic material, the 
strain tensor is given by: 
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with strain rate given by: 
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The four terms in the above equations correspond to elastic, delayed elastic, viscous (or 
secondary creep) and volumetric strain components, respectively; δij in the volumetric term is 
the Kroneker delta. 
 
For triaxial stress conditions, with a known total strain rate ߝሶ௜௝ , the individual strain rate terms 
can be calculated as functions of the stress state and the accumulated damage as follows: 
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Equations (15) and (16) are due to Li (2002) and Equation (17) is from Singh and Jordaan 
(1997, 1999).  Here n, m, βd, βc and f3 are empirically determined constants, σ0 is a reference 
stress, ሶ݁଴

ௗ	and ሶ݁଴
௖ are reference strain rates, s is the von Mises stress, sij is the deviatoric stress 

tensor and p is the volumetric pressure.  sd in the delayed elastic strain rate equation comes 
from the Burgers body representation of the material, as in Figure 1.  Specifically, sd 
represents the effective stress in the Kelvin unit (upper portion of Figure 1) of the Burgers 
body.  Following from the Burgers body representation, the viscoelastic strain rate terms can 
be expressed in terms of nonlinear viscosities μc and μd: 
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Figure 1. Burgers body representation of the ice constitutive model. 

 

MODEL IMPLEMENTATION 
Formulation for Finite Element Analysis (FEA) 
For the purposes of FEA in Abaqus/Explicit, the stress tensor is calculated by a material user 
subroutine using the separated strain terms and the stiffness matrix (Xiao, 1997): 
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for bulk modulus K and shear modulus G.  Incremental expressions are used to determine 
stress over time: 
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The incremental stiffness matrix terms are derived from the damage and strain equations:  
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The proportional constant C is assumed to be equal to 1 to be consistent with earlier work 
(Xiao, 1997; Li, 2002).  
 
FEA Implementation 
A user subroutine (VUMAT) was written to implement the ice damage model for 
Abaqus/Explicit.  The relatively new VUMAT capability for the explicit solver offered a 
means of more accurately capturing high-speed dynamic events, typical of ice 
crushing/recrystallization phenomenae.   
 
Besides several interface changes, two features of VUMAT stand out.  The first is that the 
calculations are vectorized, so that the stress state of multiple elements are calculated with a 
single function call.  Vectorization hence gives some increase in efficiency to offset the more 
complex problem of forward Euler FEM calculations, as compared to backward Euler in 
Abaqus/Standard.   
 
The second feature of interest for Abaqus/Explicit user-defined material subroutines is that 
user-defined element deletion is available.  On the code level, this requires a state variable in 
the subroutine to be assigned as a deletion flag, which is tested to switch the flag to false 
when deletion criteria are met.  When a deletion flag is triggered for an element, Abaqus will 
assign it a zero stress and strain for the remainder of the simulation.   
 



TESTING 
Initial Validation 
For initial validation, the VUMAT code was used for a single-element triaxial loading run, 
using a 1m cube with 40 MPa hydrostatic pressure and 5 MPa compression on a single axis, 
and a 20 s creep/relaxation cycle.  Material parameters used for test runs are listed in Table 1, 
with values consistent with Xiao (1997) and Li (2002); sensitivity analysis of the parameter 
values will be a focus of future research.  Results were compared to those generated using an 
older UMAT implementation of a similar ice damage model.  A suitably close match was 
obtained; see Figure 2. 

Table 1.  Summary of parameters used in modeling. 

Symbol Description Value Units 

E Undamaged elastic modulus of ice 9500 MPa 

Ek Stiffness in Kelvin unit 9500 MPa 

ν Poisson’s ratio 0.3  

σ0 Reference stress, damage calculations 15 MPa 

s0 Reference stress, strain rate calculations 1 MPa 

ሶ݁௜௝
௖  Reference secondary creep strain rate 1.76 1/µs 

ሶ݁௜௝
ௗ  Reference delayed elastic strain rate 100 1/µs 

βc Constant for secondary creep calculation 1  

  d Constant for delayed elastic calculation 1ߚ

m Exponent for secondary creep calculation 4  

n Exponent for delayed elastic calculation 2  

q Exponent for microcracking damage calculation 5  

f3 Constant for volumetric strain calculation 1  

 



 

Figure 2. Simulated triaxial loading of a single cubic element.  (a) Applied stress (negative for 
compressive stress); (b) Abaqus/Standard result; (c) Abaqus/Explicit result. 

Validation with experimental results 
Next, FEA geometry was implemented to simulate the Hobson’s Choice experiments detailed 
in Frederking et al., (1990a, b).  That program included medium-scale indentation of in situ 
sea ice.  The test apparatus is shown in Figure 3(a) with detailing of the indentation in Figure 
3(b).  Specifically, Test 7, with a 68 mm/s indentation speed, of this experimental program 
was used; this was the test run used by both Xiao (1997) and Li (2002) for FEA verification 
of the earlier ABAQUS/Standard ice damage model.  Figure 4(a) shows the load-time trace 
for this indentation test, with the region of interest, the initial load drop, shown in Figure 4(b). 
 
For the old and new analyses of the Hobson’s Choice test, the simulated geometry was two-
dimensional (2D) (axisymmetric (Li, 2003) and plane strain (Xiao, 1997) analyses were 
executed with a similar mesh).  The geometry assumes idealized spalling has occurred prior to 
the run, with a rigid indentor extending past the width of the contact surface, on top of the 
wedge.  An example mesh used for the present modeling is shown in Figure 5; the mesh has 
290 triangular linear elements and an average node spacing of about 15 mm for an area of 
approximately 1000 mm x 1000 mm..  The analysis was run as an axisymmetric 2D geometry.  
The geometry and derived mesh were verified using a closed-form solution for a flat indentor 
on a semi-infinite plane and an elastic material, from Timoshenko and Goodier (1934).   
 

(b) 

(c) 

(a) 



 

Figure 3. Hobson’s Choice test configuration – (a) side view (b) plan view (Frederking et al., 
1990a) 

Figure 4. Hobson’s Choice (1989) Test NRC07 – (a) Load time record, (b) Initial load drop 
(Frederking et al., 1990a)  

 

Figure 5.  Example 2D FEA mesh for Hobson’s Choice simulation.  Rigid indentor is visible 
at the top of the ice wedge, protruding to the right. 

Region of 
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(b) 

(a) 

(a) (b) 



RESULTS 
With a simple element deletion criterion (damage S > Scrit for a single element) added, load 
drops similar to the test result (Figure 4(b)) were achieved.  The results are shown in Figure 6 
for Scrit = 10, 20 and 30.  Each sub-figure shows an initial gradual load drop due to softening 
and sharper load drops at time points where element deletion occurred.  Scrit = 10 is the best 
approximation to the pointed load drop of the test trace. 
 

 

Figure 6.  Explicit FEA test runs for Hobson’s Choice geometry, element deletion at (a) Scrit  > 
10, (b) Scrit  > 20, (c) Scrit  > 30; original test result in (d) 

 
The resulting elastic slope is greater than that of the test loading, and several explanations for 
this can be advanced.  An initial elastic modulus of 9500 MPa is assumed for the ice in this 
run.  This value is typical of pure ice in situations of rapid loading; static or low speed tests 
would give a lower value due to the dominance of delayed elastic strain effects (Sanderson, 
1988).  Pre-existing damage in the field ice was almost certainly present, also lowering the 
elastic modulus of the ice below the theoretical maximum.  Li (2002) discusses this and 
assumes a constant initial damage prior to the modeling runs in that work.  Finally, it is likely 
that some compliance in the test apparatus, not presently accounted for in the FEA model, 
resulted in a less stiff load response for the test result.  Generally though, the load drop 
behaviour in the model result is consistent with the test result, and the factors lowering 
apparent stiffness in the test can be added to the FEA model for future calibration and 
development, given reasonable assumptions to quantify them.  
 
CONCLUSIONS 
The new implementation of the damage mechanics model offers good agreement with test 
results and potential for high-fidelity simulation of rapidly occurring ice phenomenae.  
Additionally, the successful simulation of a load drop with element deletion suggests that 
material removal (extrusion) of crushed ice, as driven by softening and pressure melting 
processes, is a factor in creating the loading patterns (e.g., ice-induced vibration) observed in 
ice in field situations.   
 

(b) (c) (a) (d) 



The availability of element deletion in Abaqus/Explicit offers several possibilities for 
controlling the simulation and increasing fidelity.  A minimum viscosity limit is a quantitative 
indicator of softening; low viscosities also result in very high creep strains, which result in 
convergence issues.  Element deletion criteria based on a singular stiffness matrix, which 
would normally invalidate the calculation and be used as a flag for run termination, can also 
be easily implemented.  The development of improved deletion criteria is an ongoing area of 
research in this program.  Additionally, accounting for the effects of changes in physical 
conditions (e.g., strain rate, temperature) on the chosen criterion is of interest for 
investigation.   
 
Near future work will concentrate on finalization of the VUMAT code and more exact 
calibration to more sets of test data.  Medium-to-long term development will be directed to 
adding thermal calculations to the model, and the simulation of refreezing of softened 
elements by heat-driven processes.  Additionally, integration of damage modeling with 
macro-scale fracture modeling (along the lines of the FEA work in Taylor (2010)) is 
desirable. 
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