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ABSTRACT

The focus of this paper is on the material modelling of ice for engineering purposes. The goal is
to study equations for computer simulation of ice loads exerted on structures. Therefore, glacier
flow, for example, is beyond the scope of this study. The following topics are investigated: The
role of the von Mises operator in ice mechanics, the form of equations having quantities with a
decimal number exponent, the role of time in models for creep, the dislocation creep model for
ice,  grain boundary sliding, the effect of microcracking on elastic properties of ice and failure
locus. 

INTRODUCTION

It is important from an economical standpoint to be able to determine the ice loads exerted on
structures. Traditionally ice loads exerted on structures have been determined on the basis of
experimental values obtained from full-scale field tests and/or model tests in ice tanks. Due to
the lack of computer capacity mathematical models were simple and therefore their ability to
predict ice loads was limited. Modern powerful computers allow the inclusion of many
mathematically complicated phenomena in the mathematical models. Thus, today numerical
simulation provides a potential tool for determination of ice loads exerted on structures. A key
part of the numerical simulation of ice loads relies on the knowledge of deformation mechanisms
of ice and their mathematical modelling. The focus of this paper is on the material modelling of
ice for engineering purposes. Thus, the glacier flow, for example, is beyond the scope of this
study.

Preparation of a material model for computer simulation has several stages. Historically it
began by carrying out field tests on ice. Conditions on an ice field are usually so harsh that
reliable material tests are too difficult to prepare. Ice samples are therefore transported to the
laboratory where the experimental work is much easier to perform. Since sea ice has a rough
internal structure, the ice samples need to be relatively large in order to produce statistically
acceptable results. Thus laboratory grown ice has sometimes been used for the investigation of
deformation of ice. Mechanical tensile, compressive tests can provide important results on the
response of ice in the form of stress-strain curves, strain-time curves etc. These curves are an
important part of the modelling task but they do not allow the preparation of a material model.
Material modelling is not a pure curve fitting procedure; preparation of the macroscopic material
model requires a physical background. Micromechanical investigation gives the physical
background for a constitutive equation and therefore forms a solid foundation for the preparation
of the material model ! maybe first on the microscopic level and then extended to the
macroscopic level. The curves obtained from mechanical testing are utilised with the



Figure 1. Typical strain-time curve for creep 
of a body at elevated temperatures under 
constant stress or constant load.
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macroscopic constitutive equation for determination of the values for the material parameters.
This procedure is called curve fitting. Thus, micromechanical and the macromechanical
investigation gives the form for the material model whereas curve fitting provides the values for
the parameters. 

Continuum thermodynamics is a tool for preparing the validation of a material model.
Simplifying the validation of a material model by continuum thermodynamics means that the
model is checked to follow the second law of thermodynamics. The tool for doing this is the
Clausius-Duhem inequality. Validation of the material model should be a vital task in the
preparation of the material model. Finally, unutilised curves obtained from experimental work
are used for verification of the material model. After verification the material model is ready for
numerical simulation.      

There are many comprehensive papers on dislocations and other microscopic details in ice.
The aim of the present study is not to try to compete with them but to take a different view and
to study the macroscopic constitutive equations. An excellent and though evaluation of the
micromechanisms in ice is given in the book by Schulson and Duval (2009). 

When loaded, sea ice shows mainly elasticity, creep and damage. For elasticity and creep,
traditional material models are applied. Damage mechanics, however, is a newer branch of
science. Therefore, in ice mechanics the focus is on the description of damage. Although the
1980s was a very active time for modelling, the following recent papers should not be forgotten:
Derradji-Aouat (2003), Pralong et al. (2006), Sain and Narasimhan (2011) and Duddu and
Weissman (2012), just to mention some of the names working in this field. The comments on the
following pages are not for these material models.

Due to the huge increase in computer performance today, the focus in ice mechanics lies
on the modelling of ice-structure interaction. The papers by Lubbad and Løset (2011), Gagnon
(2011), Paavilanen et al. (2011) and Zhou et al. (2013) give a good view of this activity.

INTRODUCTION TO MATERIAL MODELLING

Whether the researcher is selecting or deriving a material model, he/she will face the following
questions: What is the appearance of an
acceptable material model? What are the features
of a reliable constitutive equation for creep? How
can one check the quality of the model? How can
one change this model to be better suited for
computer simulation? This is the topic of the
following study.

Creep is an important deformation
mechanism of ice. Usually, the creep curve is
constructed by carrying a uniaxial constant stress
or constant load tension test. The exact form of a
creep curve depends strongly on the material and
on the temperature. However, many materials
give the curve shown in Figure 1, which has
three stages. The secondary creep is sometimes

just a turning point of the curve.

THE VON MISES OPERATOR IS PRESENT IN CREEP MODELS AND SHOULD
BE IN GBS MODELS

The micromechanical role of the von Mises operator  for creep, plasticity and for grainJvM (" )
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boundary sliding (GBS) is studied. The square root of the mean square of the shear stresses
through all directions of a material crystal is obtained by carrying out integration over all the
planes of a unit sphere. This is

In Equation (1) the notation  stands for the surface area of the unit sphere. Figure 2(a) showsΩ
half of the unit sphere and the shear stress  acting on it. The shear stress  is the driving forceτPn τ
for the dislocation creep [Figure 2(b)] and for the grain boundary sliding [Figure 2(c)]. According
to Schulson and Duval (2009, p. 158), “It is worth noting that the viscoplasticity of
polycrystalline ice can be described by invoking (only) four slip systems.” This means that the
effect of all shear stresses acting in four directions has to be taken into account. For an acceptable
accuracy it can be replaced by an average value of the shear stress in all directions. In granular
ice, there are grain boundaries in all directions. Thus, the quantity  is a good candidate forI (τPn )
measuring the overall force for dislocation creep and for grain boundary sliding. However, it is
time-consuming to compute the value for . Therefore, it should be replaced with somethingI (τPn )
else that provides the same information but that is computationally much lighter. 

Fig. 2.  (a) Shear stress on the (half of the) unit sphere. (b) Shear stress is the driving force for
dislocation glide. (c) Shear stress induce grain boundary sliding.

According to Novozhilov [1952, Eqs (1.2) and (2.l3)], the quantity  is related to theI (τPn )
second deviatoric invariant of the stress tensor . Thus,  is also related to the vonJ2 (σ ) I (τPn )
Mises value of the stress tensor . The relation isJvM (σ )

Based on the above discussion, the von Mises value of the stress tensor  is a goodJvM (σ )
quantity for measuring the driving force for dislocation creep and for grain boundary sliding.
Therefore, the von Mises value of the stress tensor  is present in material models forJvM (σ )
creep and plasticity and should be present in constitutive equations for grain boundary sliding.
When expressed in the rectangular Cartesian coordinate system  the quantity (x1 ,x2 ,x3 ) JvM (σ )
takes the form

In Equation  (no summation) is the normal stress in the -direction and  is the shear stressσi i xi σi j
caused by a -directional force acting on the surface the normal of which is in the -direction.xj xi
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UNITS CANNOT HAVE DECIMAL NUMBER EXPONENTS

The secondary creep is modelled by Norton’s law, which in ice mechanics is called Glenn’s law.
For uniaxial tension it is often written in the following form:

where  are material parameters. If Model (4) was used, the parameter  would takeε0 re, n ε0 re
strange unit that would be dependent on the value of the exponent n. The following simple
example displays the problem. The exponent n is assumed to have the value 3.427 and the stress
σ was represented in MPa’s. This leads to the conclusion that the unit for the parameter ε0 re

should be . If the value for the parameter n was known within a tolerance (as it(1 /MPa)3.427

should be), what would be the unit for the parameter ? This implies that Form (4) is not anε0 re
acceptable one.

The constitutive equation called Norton’s law should be written as

In Material Model (5)  is a parameter the value of which can be fixed before determinationσre
of the values for the parameters  and n. It is important to note that Form (5) does not haveε0 re
more parameters to fit by a curve-fitting procedure than Form (4). In principle, the value for σre
is an arbitrary one. The role of  is to make the quantity  dimensionless. However, inσre σ /σre
order to reduce the error caused by the inaccuracy of the value for the exponent n, the value of

 should be chosen so that the ratio  takes values close to unity. This means that if thereσre σ /σre
were three data curves with the stress values 40 MPa, 60 MPa and 80 MPa, a recommended value
for  would be 60 MPa. It is worth noting that the parameters  and  have a similar effectσre ε0 re n
on the viscous strain rate . Increasing values for   and  lead to an increasing value for theε0 v ε0 re n
viscous strain rate . Only results obtained by different values of the stress  can display theε0 v σ
different roles of parameters  and  in Creep Model (5).ε0 re n
 
TIME IS NOT A VARIABLE IN THE CREEP EQUATION

The creep model introduced by Costa Andrade (1910, p. 11) is studied next.  The original
appearance, viz.

is replaced by

In Equation (7)  is a parameter the value of which can be fixed before the determination of thet0
values for the parameter A. This is the same as was discussed when evaluating Norton´s law.

Model (7) can be generalised by writing (without 'other terms')

where k is a positive number less than 1,   is a stress-dependent function and the other termsA (σ )
are dropped out. The modifications of Form (8) are widely used today.

One of the problems in Model (8) is that at the moment t = 0, the value for the viscous
strain rate  tends towards infinity. However, the quantity  has a weakε0 v (t / t0)

&k (0 < k < 1)
singularity at the point t = 0. This means that  is integrable and therefore the viscous(t / t0)

&k
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Figure 4.  The load is approxi-  
mated by a stair-case function.

strain  is bounded (i.e. has a finite value). The problem arises when finite element or finiteεv

difference codes are used. Such programs carry out the time integration numerically. Usually
numerical methods utilise the derivative of the integrand at the beginning of the time step. For
the first time step (starting from t = 0) this derivative is unbounded and therefore no numerical
integration is possible. This problem can be solved through careful modelling.

The second problem of Equation (8) is the starting shot to measure time t, i.e. the definition
of the moment t = 0. The natural time scale is the one that started with the Big Bang. It is not for
creep models. The other possibility is to measure time from the moment the load was applied.
The difficulties related to this interpretation are discussed next.

Because of the nature of the creep process, the function  is a monotonically increasingA(σ)
function. This means that if the stress σ tends toward zero, the value of the function A(σ)

approaches zero and, according to Equation (8), the
viscous strain rate  approaches zero as well. Twoε0 v

different loadings denoted by 1 and 2 shown by
Figure 3(a) are studied. Load 1 immediately takes
the value σ1 whereas load 2 is extremely low up to
the moment t = t1 and then takes the value σ1. Time-
Hardening Material Model (8) gives strain-time
curves with the forms sketched in Figure 3(b). The
paradox in Figure 3(b) is that the shapes of the
strain-time curves differ from each other. They
should be equal, since the extremely low loading
'equals' no loading at all, therefore it can have
virtually no effect on the strain-time relationship.
This paradox can be solved by the following
interpretation: Equation (8) is prepared for constant
stress cases, i.e. for σ = const., and t = 0 is the
moment of application of the constant stress. This
means that the varying stress must be described by
a sequence of constant stresses, i.e. by a staircase
function, as shown in Figure 4. It is not a big
problem for computational mechanics, since in the
numerical integration procedures the stress-time
curve has to be approximated in any case. On the

other hand, the interpretation of Model (8) for varying stress-time dependence is a difficult task.
This problem is discussed following the introduction of a strain-hardening model.

A material model using strain-hardening formalism can be expressed as follows:

where  is a stress-dependent function and  is a non-B (σ ) m
negative number. As Figure 3(c), shows the strain-hardening
model gives the correct  curve for both loads. Materialg & t
Model (9) has a much stronger micromechanical foundation
than Model (8), since the accumulated creep strain  mayg v

be the source for hardening but time   can never causet
hardening. The values of the material parameters for the
time-hardening model determined from a constant uniaxial
stress  test can be mathematically converted to the valuesσ

for a strain-hardening model [e.g. Santaoja (2012, pp. 227-228)].  
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Figure 3.  (a) Two loadings and the response
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hardening Model (8) and (c) Strain-
hardening Model (9).
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The time-dependent response of materials can display a viscoelastic and/or viscoplastic
character. Both deformations are time dependent, but viscoelastic strain is recoverable whereas
viscoplastic strain is permanent. Usually both theories describe the response which is dependent
of the deformation history of the material. Therefore, the term “time-dependent” should be
replaced by the term “path-dependent”, but the generally used terminology is difficult to change.

As discussed above, the real load can, for example, be approximated by a staircase function.
However, for a path-dependent material the responses of the load increments are not mutually
independent. In the classical theory of viscoelasticity, for example, the expression to determine
the value for creep strain  takes the following appearance:g v

A method to find a solution (even with the staircase load) takes considerable computing time,
since at every time increment the time integration has to be started from the first time increment
and the integration has to be performed over all time steps. Thus, this kind of an approach is not
for computation of ice loads exerted on structures. This is discussed in greater detail by Santaoja
(1987), (1988),  (1990, pp. 142-150).

A way out from the above problem is that the introduction of  a quantity describing the
history of the response should be included in the material model. This formalism is a vital part
of continuum thermodynamics with internal variables. It is the topic of the next section. Prior to
that a brief discussion is given of the following material model.

Sometimes material models are given in the form

where  is a function of appropriate quantities. Form (11) is possible, if it has beenSomething
obtained by time-integration of a material model

Unfortunately, for a realistic material model the closed-form time-integration is not usually
possible even in the case of constant stress . Norton’s law may be the only exception.σ

The above discussion does not apply when experimentalists express their creep data. The
creep research community has become used to reading creep curves when they are given in time
scale. Furthermore, researchers working on material modelling can easily apply such creep curves
for their own curve fitting and other purposes.

DISLOCATION CREEP MODEL FOR ICE

Le Gac and Duval (1980) have proposed a constitutive equation for ice for modelling the
response of ice when the dislocation creep is dominant. The model is formulated for isotropic ice
when the deformations are small. However, the type of anisotropy, which depends on the
deformation history of the material (excluding Bauschinger effect), is described in the model.
Both isotropic and kinematic hardening are modelled. The author has given it the following
appearance (Santaoja, 2012, p. 232):

The quantity  refers to the onset of creep. The second-order tensor   describes kinematicσt r β1

hardening and the scalar valued quantity  describes isotropic hardening. The form of theβ 2
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quantity  expressed in the  coordinate system can be derived fromJvM (σ & β1 ) (x1 ,x2 ,x3 )
Equation (3). The notations  and  are the deviatoric parts of the stress tensors  and . Thes b1 σ β1

scalar component  of the deviatoric stress tensor  readssi j s

where the Kronecker delta   is defined to be zero when i and j differ, and to be unity whenδi j
. The evolution equations for both kinematic hardening and isotropic hardening havei ' j

hardening and softening behaviour and they have similar appearances. The evolution equation
for isotropic hardening , for example, has the following form:β 2

where ,  and m are material parameters. The first term on the right side of Expression (15)n 1 n 2

gives the hardening, whereas the second term gives the softening of the material.
The model proposed by Le Gac and Duval (1980), Equations (13) and (15),  is an excellent

example of a constitutive equation which can be written in terms of continuum thermodynamics
with internal variables.

GRAIN BOUNDARY SLIDING
 
Besides the pure elastic distortion of crystal lattices of ice, there is another recoverable
deformation mechanism called delayed elastic deformation. This is a time-dependent and
recoverable mechanism and therefore it is a viscoelastic deformation. Delayed elasticity is a
consequence of shear stress-induced grain boundary sliding. It is an important deformation
mechanism at high homologous temperatures. In engineering applications such conditions arise
in sea ice. 

Because grain boundaries are not flat, sliding generates incompatibilities near  deviations
from planarity. Moreover, in polycrystals sliding is blocked at triple junctions. As the sliding
displacement increases, the accommodation of these incompatibilities begins to control the extent
and rate of sliding (Raj & Ashby, 1971). Different accommodation mechanisms are possible.
(Weiss & Schulson, 2000, p. 281)

According to Weiss and Schulson (2000, pp. 281 and 282), there are four different  types
of accommodation. They are: (a) Elastic accommodation. Sliding is accommodated by the elastic
distortion of neighbouring grains. (b) Accommodation by diffusion. Diffusion of atoms or
vacancies in either the bulk of the grains or the plane of the boundary, or both, accommodates
further sliding. (c) Accommodation by power-law creep. This mechanism is based on dislocation
glide and climb. (d) Cracking. Finally, when stress concentrations resulting from grain boundary
sliding are strong enough and accommodation mechanisms are too slow and/or too limited, either
hole growth in the boundary plane or crack nucleation at blocking sites may occur.

The most well-known material model for the grain boundary sliding of ice is that proposed
by Sinha (1978). It is for constant stress  and it readsσ

where  is the grain boundary sliding strain,  is the inverse of the relaxation time and , g g aT c s
and  are material parameters. For varying state of stress, the utilisation of Model (16) takes ab
lot of computing time, as pointed out by Santaoja (1987, 1988) and Evgin et al. (1991). Later
Sinha modified his expression, but this is not studied here. 
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Since grain boundary sliding is a recoverable process, it has to be connected to a
mechanism that gives a recoverable nature for grain boundary sliding. The author proposes that
the recoverable mechanism is the distortion of crystal lattices not very close to the grain
boundaries but on the ice crystal scale. 

EFFECT OF MICROCRACKING ON THE ELASTIC PROPERTIES OF ICE

The formation of microcracks initiates the weakening of ice (Frost, 2001, p. 1823). The effect of
microcracking on the elastic properties of ice can be determined analytically. Based on stress
intensity factors ,  and , Basista (2002, p. 227) derived expression of the specific GibbsK I K I I K I I I
free energy  for a Hookean material with rectilinear non-interacting microcracks in a two-gud

dimensional domain. His equation is based on the expressions for the stress intensity factors ,K I
and . The author modifies the expression by Basista and gives it the following appearanceK I I K I I I

for the plane stress:

where  is the density,  and  are the Lamé elastic constants,  is the thickness of the two-ρ0 λ µ h
dimensional domain and  is the number of microcrack groups.M
In each group the sizes and orientations of the microcracks are
equal. The quantity  is the length of the microcrack and the unita r

normal vector for the microcrack surface is denoted by , asPn r

shown in Figure 5. The microcrack densities are
, where  is the number of microcracksQr ' m r / ( ρ0 V

rve) mr

within the r‘th microcrack group and  is the representativeV rve

volume element. The Representative volume element RVE of the
material is large enough to be statistically representative of the
material properties that will be modelled and small enough
compared to the macroscopic structural dimensions. The latter
conditions means that the RVE has to be small enough to be to be
treated as a material point in the structural analysis. It is
noteworthy that the indices in Expression (17) only take values 1
and 2.

Since in the present model  andg % gud

Equation (17) gives for the damage elastic strain tensor  εde

where  is the Hookean strain tensor,  is the damage strain tensor and  is the compliancege gd S
tensor of the Hookean material. The -coordinate of the microcrack coordinate system z1 (z1,z2,z3 )
is parallel to the normal of the microcrack and the coordinates  and are on the plane of az2 z3
microcrack, as shown in Figure 5. For one microcrack group referred to as the microcrack
coordinate system , the components of the compliance tensor   read(z1,z2,z3 ) Sd
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Figure 7.  Failure surface and two
responses.
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Figure 6.  (a) Surfaces of a microcrack penetrate each other under compression. (b) Penetration
is prevented by the Heaviside function .H(Pn r" σ" Pn r )

and

The compliance tensor , referred to as the reference frame  for a multidirectionalSd (x1,x2,x3 )
microcrack field, is obtained from Equations (20) and (21) first by carrying out coordinate
transformation and then adding together the compliance tensors due to  microcrack groups.M

The Heaviside function  in Equation (17) is an important detail beyond theH(Pn p" σ" Pn p )
work by Basista (2002, p. 227). It ensures that under compression the crack surfaces do not
penetrate each other, as demonstrated in Figure 6.

A similar equation to Equation (17) is for penny-shaped microcracks [Santaoja (1989) & (1990)].
The above evaluation neglects the interaction between microcracks. It is very difficult or

even impossible to formulate a general expression for microcrack interaction. Sevostonianov and
Kachanov (2010) argued that the key parameter of reduction of strength is not the reduction of
the average (over the specimen) stiffness (e.g. due to the microcracks), but the local minimal
values caused by the formation of defect (microcrack) clusters.

Results (20) and (21) are based on the laws of nature, on Hooke’s law and on the fact that
there are microcracks in the material. This is a great benefit over the damage mechanics
expression  the foundation of which is usually in curve fitting.σ ' E (1 & D) εde

FAILURE LOCUS

Failure of materials is sometimes expressed by a failure surface as expressed in Figure 7. A
failure surface may cause problems. Let us assume that
increasing the number of forming microcracks leads to  failure
of the material. Figure 7 sketches a failure locus within which
there is a surface that causes the onset of microcracking. The
failure locus was determined experimentally and state   wasõ1
found to be a point of maximum stress, which was interpreted
to be the point of failure. Unfortunately, if the material was
loaded differently and the different path in the  and σ1 σ2
space was taken, the same point in the  and  space wouldσ1 σ2
lead to the state . Two different states means two differentõ2
numbers of microcracks. Thus, the state  would not be aõ2
point of failure and therefore no failure surface valid for every
loading history can be drawn in the  and  space. σ1 σ2

Furthermore, computing requires a smooth stress-strain curve after the peak value of the
stress  independent of what happens in nature. This aspect may be forgotten when failureσ
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surfaces are introduced, although smooth curves can be combined with a failure surface. 
Good fit of the failure surface with the experimental data does not guarantee the quality of

the failure function. A rubber band, for example, attached to the measured data points by pins
gives a perfect fit, but can not be a model, since it does not have a physical explanation and
therefore it may give totally incorrect results outside the data points. The von Mises surface,
however, has a solid physical foundation, as already pointed out in this paper.       

DISCUSSION AND CONCLUSIONS

The main conclusions of this paper are: The von Mises operator describes the effect of shear
stresses on deformation, time  is not a variable for material models, instead of traditionalt
damage models, i.e. , the effect of microcracks on the elastic properties of iceσ ' E (1 & D) εde

can be determined analytically and the failure locus in the  and  space may be impossibleσ1 σ2
to determine. A model for dislocation creep was given.

In spite of the above discussion, experimentalists are encouraged to publish their results
with the strain-time equations. By doing so they will  not be taking a stand as to which is the
correct material model. Furthermore, the strain-time equation or tabulated data allows material
modellers to utilise the experimental data effectively.

It should be remembered that every material model has approximations or even flaws. The
limitations of the model are not the main point, but the suitability of the model for engineering
works. Earlier the computer capacity imposed restrictions on ice-structure interaction
simulations. Today the lack of reliable material models is the main obstacle for computer
simulations. The development of material models is an important part of the work for ice
researchers.   
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