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ABSTRACT  
Knowledge about extreme keel drafts is needed for appropriate design of offshore 
installations in ice ridge infested waters. Ice drafts were measured with upward looking sonar 
by the Norwegian Polar Institute in the western part of the Fram Strait along 79°N in the 
period 2006 to 2011. This is where the Transpolar Drift exits the Arctic Ocean, and the ice 
consists of a mixture of first-year and old ice originating from most parts of the Arctic Ocean. 
In total, 8 year-long deployments at 4 locations were analyzed. A generalized Pareto 
distribution was fitted to all ridges deeper than 17 m. This only amounts to a small fraction of 
all the ridges, but follows the methodology common for the calculation of extremes. All 
ridges deeper than 25 m were investigated prior to the analysis to ensure that no icebergs or 
other misidentified features were included. In total, 5 identified ridges were removed. The 
deepest ridge observed in the period was 35 m deep and 5 more ridges were deeper than 30 m 
in these 8 deployment seasons. Since the shape parameter in the generalized Pareto 
Distribution was close to zero the distribution could be simplified into an exponential 
distribution. Assuming an exponential distribution gave an estimated 100-year return value in 
the range 37 to 41 m.   
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INTRODUCTION  
Ice ridges are often the governing design action for both platforms and pipelines in areas with 
a dynamic ice cover. It is therefore of great importance to know how deep ridge keels could 
be in the area in question. This is usually estimated through an extreme value analysis. Due to 
the limited amount of available ice draft data, only a few extreme ridge keel depth analyses 
are published (Melling and Riedel, 1995; Melling and Riedel, 1996; Pilkington and Wright, 
1991; Ross et al., 2012; Wadhams, 1983; Wadhams, 2012).  

Data used for the extreme value analysis above are all based on upward looking sonar (ULS). 
A ULS measures the ice draft above the sonar and the final product is a time series if the ULS 
is moored to the seabed or a spatial series if the ULS is mounted to a submarine. The moored 
ULS can be supplemented by an ADCP which measures the ice drift speed and allows a 
conversion into a spatial series (Melling et al., 1995). A time series is sufficient for an 
analysis of extreme drafts at a specific location.   

While Wadhams (1983) uses spatial ice draft data from a submarine mounted ULS,  Ross et 
al. (2012) estimate return values based on data from a moored ULS. The latter data are better 
suited for the estimation of extremes at a point since spatial draft data must be complemented 
by ice drift speed to get a point estimate. Wadhams (1983, 2012) has found that the ice ridge 
keel draft can be approximated by an exponential distribution. Ross et al. (2012) obtain this 
indirectly as they apply the Weibull distribution but find that the shape parameter is close that 
which corresponds to exponential distribution. 

A minimum draft is used to filter out ridges which are too shallow to include in the extreme 
value analysis. While Ross et al. (2012) follow common methodology in extreme value 
analysis and apply high thresholds (ℎ𝑘 > 15 m), Wadhams (1983, 2012) fits the exponential 
distribution to all ridges deeper than 5 m. We use the generalized Pareto distribution with a 
range of thresholds to investigate the stability of the results. The shape parameter (𝜉) was 
close to zero for most tested settings. This means that the generalized Pareto distribution 
could be simplified to exponential distribution. In combination with a threshold value of 17 m 
the exponential distribution seems to provide the most reasonable estimate of the 100-year 
return value which then is in the range 37-41 m.  

 
 
 
 
 
 
 
 
 
 
 



METHOD 
Ice draft data were collected by the Norwegian Polar Institute (NPI) using an Ice Profile Sonar 
(described by Melling et al., 1995) in the period 2006-2011 in the Fram Strait (Hansen et al., 
2013). The moorings with the sonars were placed at 4 different locations at the edge of the 
Greenland continental shelf (Table 1). In total, 8 measurement seasons (lasting from 
September to September) were used. No data exist from 2007/2008 due to very heavy ice 
conditions in August/September 2007, which hindered the annual retrieval and re-deployment 
of the moorings.  

The Ice Profile Sonar (IPS) measures the ice draft every 2 seconds and prior to the ridge 
identification the data were smoothed with a running average filter with a window size of 10 
seconds (5 points). The smoothing was done to minimize effects from erroneous draft 
readings which could create artificial gaps which the ridge identification criterion uses as an 
identifier for a new ridge. Ice ridges were identified using the Rayleigh criterion (Wadhams 
and Horne, 1980) with a threshold value of 2.5 m and a minimum draft of 10 m. The Rayleigh 
criterion defines an individual ice ridge when the ice thickness on each side of a local maxima 
descends at least halfway toward the threshold value. The extreme value analysis only 
considers the draft (or more specifically the maximum draft) of the ice ridges.  

All ridges deeper than 25 m were manually inspected. In total there were 47 ridges deeper 
than 25 m of which 5 ridges were removed. That included the deepest feature which was 
measured to be 38.2 m and probably was an iceberg. This iceberg was actually deeper than 
38.2 m but since this was too close to the IPS it was recorded as out of range and only given 
an error code.  

Table 1. The location of each mooring and which measurement seasons that were used.  

Location (coordinate)  2006/2007 2008/2009 2009/2010 2010/2011 
F11 (78°50'N,3° W)    X 
F12 (78°50'N,4°W)   X X 
F13 (78°50'N,5°W) X X   
F14 (78°50'N,6°30’W) X X X  
 

Extreme value model - generalized Pareto family 
A generalized Pareto distribution (GPD) model was used for the extreme value modeling. The 
GPD facilitates the use of more than block maxima which a traditional General Extreme 
Value (GEV) model uses. If 𝑋1,𝑋2, …  are independent and identically distributed random 
variables the generalized Pareto family approximates (1) and is described by (2) where 𝜉  is 
the shape parameter and 𝜎 the scale parameter,  𝐹(𝑋) is the common distribution function, 
𝐻(𝑦) is the distribution function of (𝑋 − 𝑢) and 𝑢 is the threshold value (Coles, 2001). In the 
special case where the shape parameter 𝜉 = → 0 this becomes the exponential distribution 
with parameter 1/𝜎�.  



 
 Pr(𝑋 > 𝑢 + 𝑦|𝑋 > 𝑢) =

1 − 𝐹(𝑢 + 𝑦)
1 − 𝐹(𝑢)

 ,𝑦 > 0  
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Defined on (𝑦:𝑦 > 0 and �1 + 𝜉 ⋅ 𝑦
𝜎�
� > 0), where 

 𝜎� = 𝜎 + 𝜉(𝑢 − 𝜇) (3) 
and 𝜎 corresponds to the shape parameter from the corresponding GEV model. 

The corresponding parameter estimates (𝜉,𝜎�) are found by maximum likelihood estimation. 
Maximum likelihood finds the model which the observations are most likely to have been 
drawn from. For a given probability distribution𝑓(𝑥), with parameters 𝜃 (here 𝜉 and 𝜎), the 
most likely parameter estimates are found by maximizing (4). Since its logarithm also 
maximizes at the same parameter estimate the log-likelihood is used for simplicity (5). 
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(5) 

Return levels for a given shape and scale could be calculated from (6) except when 𝜉 = 0  
then (7) is applied. 𝜁𝑢 is the fraction of ridges above the given threshold 𝑢, while N is the 
return period in years and npy is the number of observations per year.  

 𝑥𝑚 = 𝑢 +
𝜎
𝜉
�(𝑁 ⋅ 𝑛𝑝𝑦 ⋅ 𝜁𝑢)𝜉 − 1� (6) 

 𝑥𝑚 = 𝑢 + 𝜎 ⋅ log (𝑁 ⋅ 𝑛𝑝𝑦 ⋅ 𝜁𝑢) (7) 

 

Confidence intervals of both return periods and parameter estimates could be approximated 
assuming normality of the parameter estimates but as Coles (2001) shows, better estimates 
could be found from the log-likelihood estimate. The maximum log-likelihood estimate 
(MLE) defines the upper limit in the parameter space while the lower limit is defined as the 
MLE subtracting half the corresponding quantile from the chi-square distribution with one 
degree of freedom (𝜒12) . Correspondingly, the high and low confidence limits of each 
parameter are found on this maximum likelihood surface.   

 
 



RESULTS 

Shape parameter 
The shape parameter (𝜉) was zero except for a slight increase above a threshold of 20 m 
(Figure 1). It equaled 0 well within the confidence interval of 95 % for all thresholds. This 
suggested that an exponential distribution can be used for the calculation of extremes. The 
scale parameter 𝜎� is then the only calculated parameter and hence it governs the return value 
estimate (7). An exponential distribution (EXP) resulted in higher extremes for the low 
thresholds and significantly narrower confidence intervals compared to the generalized Pareto 
Distribution (GP) (Figure 3).  

The data were divided into one eastern and one western data series. By varying the threshold 
value and by excluding particular seasons in each of the two datasets the sensitivity of the 
shape parameter was tested. When the 2006/2007 season was left out from the westernmost 
series, the shape parameter was about -0.1 (~2006 in Figure 2). This was not observed in the 
easternmost series, although the fraction of 2006/2007 ridges was similar. There were 
significantly more ridges observed in 2006/2007 than in any of the subsequent seasons 
(Figure 4). An analysis only considering the deepest ridge per hour also showed stability in 
the shape estimate (Figure 2). 

 

 

Figure 1. The estimated shape parameter as a 
function of threshold (u) with 95 % 

confidence intervals. 

 
Figure 2. Shape parameter estimates for the 
westernmost series, including all 4 seasons, 

leaving out (~) 2006/2007 and including only 
2006/2007. 

Return level 
Return level estimates are consistent for thresholds between 14 m and 22 m when the 
uncertainty in the estimates is taken into account (Figure 3). All the data, observed for 4 
seasons at two parallel locations, gave a 100-year return value between 37 m and 41 m 
(Figure 3). 



 

Figure 3. The 100-year return level for 
varying threshold assuming 8 years of 

observations The 95 % confidence interval is 
included in the bars. Results for the 

generalized Pareto distribution are shown in 
gray including its 95 % confidence bounds. 

 

Figure 4. Number of ridges per season above 
the given threshold. 

Inter-seasonal variation 
An extreme value analysis using all the available data (red line), fits the observed data well 
(blue circles) with a slight underestimation of the three deepest ridges (Figure 5). There was 
large variation between each individual measurement-season (gray crosses). The western 
probability distribution was more consistent than the eastern with respect to the difference that 
was apparent from including/excluding the 2006/2007 season (Figure 6).  

 

Figure 5.  A probability plot of all individual 
seasons (gray x) and the entire dataset (blue 

o). The red line is the estimate assuming 
𝜉 = 0 based on all data and threshold of 17 

m. 

 

Figure 6. A probability plot based on each 
series in Table 1 and threshold of 17 m. For 

each location the  2006/2007 season is 
included (x) or excluded (o). 

 



Threshold value 
The return level with a variable return period was calculated for both an exponential 
distribution (𝜉 =  0) and a Pareto distribution (Figure 7). The estimated return level was 
more consistent for various thresholds when applying the exponential distribution. The 100-
year return level varied between 38 and 41 depending on the method and threshold value 
which was similar to that observed in Figure 3. Since the thresholds 14 m and 17 m both have 
shape parameter estimates close to zero (Figure 1) the estimates between the two distributions 
were similar. A threshold of 20 m resulted in larger deviation which is related to the positive 
but moderate shape estimate (𝜉~0.05). When the confidence intervals were included, the 
differences between the methods were revealed (Figure 8). An exponential distribution will 
predict on a narrower confidence band than the Pareto distribution. This difference in 
confidence interval is discussed in Coles (2001) who argues that the Pareto distribution 
estimate better reflects the uncertainty connected with extrapolating model results.   

 

Figure 7. The return value for variable return 
period, threshold and method. 

 

Figure 8. Return level vs. return period for 
the exponential distribution (Exp) and the 
generalized Pareto distribution (GP). Both 

with 95 % confidence intervals and a 
threshold of 17 m. 

Model configuration 
A threshold of 17 m was chosen to be the most representative for this extreme value analysis 
and the model fitted the observations well (Figure 9).  

An increasing threshold u reduces observations for the inference but should decrease the bias. 
Stability was present both in the shape and the return level for the increasing threshold (Figure 
1 and Figure 3). This gave confidence that while a lower u increased the bias it decreased the 
variance. A threshold of about 17 m seemed to balance the variation and bias well. Both an 
exponential distribution model and a generalized Pareto model were able to reproduce most 
observations but slightly underestimated the draft of the deepest ridges (Figure 9).  

 



 

Figure 9. A quantile plot of the estimate from both models using a threshold of 17 m. The red 
reference line is where the model predicts the same as the observed. 

DISCUSSION 
The present extreme value analyses provide an estimate of how deep an ice ridge could be in 
North East Greenland. This is an area which is of increasing interest to the oil and gas 
industry and such an extreme value analysis could provide valuable input to design of 
structures to be used in this area. Ice that floats out the Fram Strait also origins from most of 
the Arctic Ocean. Although how a very deep ridge deteriorates over time is unknown, the 
extremes observed in the Fram Strait indicate the extremes in the Arctic Ocean.  

Independent and identically distributed observations 
We expect that the dependency between observations of very deep ridges is reduced with the 
time and distance to the event which formed them. In the Fram Strait, when and where the 
ridges are formed is unknown and could vary from locally formed ridges to ridges formed 
several years ago in far away locations.  

Unfortunately this time series is limited in time which disallows the use of a block maxima 
model like the General Extreme Value model. Instead the inference was based on the 
generalized Pareto Model which uses more of the observations than only a block maxima. We 
assumed that ridges deeper than 14 m were approximately independent. An increase in 
threshold is expected to increase the chance that the observations are independent. Thus when 
the results proved similar regardless of the threshold the assumption about independency is 
supported. This is further supported from the division into two series and by only considering 
the hourly maxima which all produced similar results.  

An exception was the dependency on 2006/2007 in the westernmost series which, whether 
included or not, had a major impact on the estimated shape parameter (Figure 2) and thus the 
return value. This deviation could indicate that the data are non-stationary. Non-stationarity is 
also in line with recent changes in the ice draft distribution (Hansen et al., 2013) and the 
reduction in old ice (Kwok et al., 2009). However stationarity is a very complex property to 
study (Lins, 2012) and the present time series is too short for this kind of study.  

It is clear that 2006/2007 was a year of more frequent ridges with a higher probability of 
encountering a large ice ridge. But while the probability of exceedance for the western data 



depends on whether or not the 2006/2007 data are included, this effect was not present in the 
easternmost series. The probability of exceedance for each individual measurement season 
suggested that there are major differences between years (Figure 5), which do not strictly 
justify assumptions about identical distributions.  

Relation to other studies 
Previous studies have used both the exponential distribution (Wadhams, 1983 and 2012) and 
the Weibull distribution (Ross et al., 2012) to estimate extreme keel drafts. The generalized 
Pareto distribution is, as already shown, equal to the exponential distribution when 𝜉 = 0. The 
same applies for the Weibull distribution which reduces to the exponential distribution when 
its shape parameter is 1.  

In the present study the shape parameter was close to zero and justified the use of the 
exponential distribution. Ross et al. (2012) found that the Weibull-shape parameter for 
various thresholds was approximately 1. This suggests that both the present study and Ross et 
al. (2012) predicted similar results to those found by Wadhams (2012). To illustrate the 
potential similarities between these three approaches the Weibull-, generalized Pareto and the 
exponentialdistributions were fitted to all samples above a threshold of 17 m (Figure 10). All 
distributions were approximated with the log-likelihood method (5). Since the parameter 
estimate in the Weibull is close to 1 and the shape parameter in the generalized Pareto 
distribution was close to 0 they predict almost identical 100 year return values (circles in 
Figure 10).  

 

Figure 10. A comparison of the extreme value estimates obtained by using the Weibull-, the 
generalized Pareto- or the exponentialdistributions with a threshold of 17 m. The crosses are 

observations while the circles are the corresponding 100 year return value. 

Ross et al. (2012) predicted return values for the Fram Strait based on based the 2 
measurement seasons in 2008/2009 which were included in this analysis. They found that the 
100-year return value was about 33±4 m which is somewhat low compared to our results. 
Since we have 3 observations above 33 m in 8 measurement seasons the estimate of Ross et 
al. (2012) is probably too low. An estimate in the upper range of their suggestion is more in 
line with the present findings (Figure 8). Wadhams on the other hand found that the return 
value in the Beaufort is in the range 30-35 m which is very close to the estimate by Ross et al. 
who found this to be 32±2 m.  



Ice ridge keel action 
The ice ridge draft is highly relevant for the calculation of ridge keel action on structures. An 
important point is to distinguish between extreme features such as the draft of an ice ridge and 
the extreme responses used for design. The action from an ice ridge keel on a structure is a 
combination of the keel geometry, velocity, and strength of the ridge keel. Hence an 
extremely deep ridge keel does not necessarily result in the largest design action or the largest 
responses.  

Another aspect of load calculation is which part of the ice ridge that should be included. 
Figure 11 shows an ice ridge which is deepened by what could be a level ice piece. Should the 
maximum depth of the ridge be set according to what is expected to be contributing mostly to 
the load? And in this case should we then reduce the ridge draft here from 25.5 m to 20.5 m? 
In the present study we chose to leave this as it is. To automate such a criterion involves 
subjective criteria and could be difficult to implement. Another reason to leave this within the 
study follows from ISO19906 (2010). This suggests that the confinement in the ridge keel 
increases from zero at the very deepest point up to the consolidated layer. By removing 
bottom features it is likely that the keel bottom has higher consolidation than expected which 
leads to an underestimation of the load from the ridge keel.  

 

Figure 11. The maximum draft of this particular ice ridge might be deepened by a piece of ice. 
This makes the maximum draft of the ridge 5 m deeper. 

CONCLUSION 
An extreme value analysis of extreme keel drafts has been conducted using a generalized 
Pareto distribution. Data were obtained from upward looking sonars placed along 79°N at 
edge of the Greenland continental shelf between 2006 and 2011. In total, 8 measurement 
seasons of upward looking sonar data were used. The deepest feature in this period was 35 m 
deep and a total of 6 ridges were deeper than 30 m.  

The generalized Pareto distribution was simplified to the exponential distribution since its 
shape parameter 𝜉  was close to zero. An exponential distribution in combination with a 
threshold of 17 m gave a 100-year return value in the range 37-41 m. This is somewhat higher 
than previous studies of extreme keel drafts in the same area and also higher than 
corresponding estimates for the Beaufort Sea.  
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