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ABSTRACT 

A simplified ice load model applied on ship hull is developed, which can be used to assess the 

global dynamic response of a ship cruising in level ice. Full scale ice load time histories 

acting on the local positions along the hull are estimated using the strain data measured on the 

frames. It is found that the correlations between local loads are negligible, thus the focus is 

put on developing a simple model to simulate the loads on the local segments along the hull. 

In order to assess a ship’s global dynamic response, the local ice loads are independently 

simulated using this model and then applied along the hull. Based on statistical analysis of the 

full scale data, the model in time domain is developed, which depends on the hull geometry, 

cruise speed and ice thickness. Some simplifications are made in the present model, which 

can be improved in the future. By Fourier transform of typical ice load time histories, a power 

spectral density function is developed, which is the equivalent model of the local ice load in 

frequency domain. 

 

 

1.  INTRODUCTION 

 

In the Arctic or sub-arctic waters, ships must have the capability of breaking the thick ice 

floes. The research on ice resistance of ships has been performed for a long time, and 

representative findings have been published (e.g. Lindqvist, 1989). Various approaches have 

been used to improve the understanding of ice-hull interaction. In order to obtain the first 

hand information, full scale ships are instrumented to measure the ice loads on ship hull (e.g. 

Hänninen, 2003. Kujala, et al., 2009. Iyerusalimskiy, et al., 2011); Because of the much lower 

cost and more complete dataset, model tests have been used a lot in spite of the scaling effects 

(e.g. Izumiyama, 2005, Kujala, et al., 2012); On the other hand, numerical models have been 

developed in recent years (e.g., Su et al., 2010, Lubbad et al., 2011). Most of the research 

activities so far concern the prediction of ice resistance and the strength of hull against ice 

loads, and there is limited work on dynamic characteristics of the ice loads. 

 

Ships going through ice might experience vibration under ice loads, but in most cases this is 

not a critical problem since the local ice loads along the hull vary non-simultaneously, and the 

dynamic component of the global resultant ice load is insignificant. However, for some types 

of ships which might be vulnerable to global dynamic response, the potential risk of global 

ship vibration should be assessed, which is the main intention of this paper. A simple model is 

developed to simulate the time-varying ice load acting on ship hulls, and the basis is a set of 

strain data measured on the frames of a full-scale ship. The strain data is used to estimate the 

load acting on local segments along the hull, and the concurrently recorded ice thickness and 

ship speed are used to calibrate the parameters in the model. 
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2.  ICE LOAD DATA AND INDEPENDENCE BETWEEN LOCAL LOADS 

 

The data used in this paper comes from a cruise of Norwegian coast guard ice breaker KV 

Svalbard (Figure 1) in March 2007, and the vessel was instrumented with a set of equipment 

to collect all kinds of information. A number of strain sensors were mounted on the frames of 

the ship close to waterline, and the intention is to estimate the ice load acting on the local 

segments of the hull. The strain sensors were located on nine different locations along the hull 

(Figure 1), and the distance between adjacent locations is about 4~6 m in the bow area. The 

original sampling frequency of the strain sensors were 678 Hz, which is proved as too high in 

the post-processing because of the high-frequency noise introduced. Therefore, the sampling 

frequency of the raw data is scaled down by a factor of 4, and the output sampling frequency 

is 168 Hz.  

 

 
Figure 1  Photo of KV Svalbard and plan view of the locations of strain sensors 

 

Considering an instrumented frame as a beam, the strain signal can be used to estimate the 

shear force in the beam, which is then used to approximate the ice load acting on the local 

area. Even though numerical calibration is done using finite element model of the local hull 

component, the accuracy of ice load estimating was still unsatisfactory (Espeland, 2008). In 

spite of this uncertainty, the estimated ice loads are still used in developing the present model, 

because the model intends to have a dimensionless form and the effect of load magnitude can 

be eliminated. When applying the model, the load magnitude needs to be estimated separately. 

 

 
Figure 2  Local ice loads acting on the portside 
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Along with the strain data, ice thickness is recorded with sampling frequency of 15 Hz and 

cruise speed is recorded once a second. These two data sets are very important since the 

characteristics of ice load must be dependent on them. Totally 33 data events are used to 

develop the model herein, in which the ice thickness range is recorded as 0.2 ~ 2.0 m, the 

cruise speed range is 2.6 ~ 6.1 knots (Espeland, 2008). Figure 2 and Figure 3 show the ice 

load time histories in a typical event, in which the denotations of F1, F2, …, F8 correspond to 

the locations shown in Figure.1. Accordingly, F1, F3, F5 and F7 are the local loads acting on 

the portside and F2, F4, F6 and F8 act on the starboard. Since the instrumentation at mid ship 

location F9 is just for comparison and the load magnitude is significantly lower, F9 is not 

used in the analysis. 

 

 
Figure 3  Local ice loads acting on the starboard 

 

According to the concurrent time history plots in Figure 2 and Figure 3, the local ice loads on 

hull are a set of impulses and the loads on different locations do not fluctuate simultaneously, 

which means that the local loads might be independent to each other. For the purpose of 

investigating the independence of local loads, ten events are used to calculate the correlation 

coefficients between two local loads, and the result is shown in Figure 4. 

 

 
Figure 4  Correlation coefficients of the local loads 

 

Referring to the denotations in Figure 1, the correlation coefficients are classified into three 

groups: Group.1 includes the correlation coefficients between two adjacent pairs, e.g. F1-F3, 



F5-F7 or F4-F6; Group.2 includes the correlation coefficients between two pairs whose 

distance is two times the adjacent distance, e.g. F1-F5, F3-F7 or F4-F8; Group.3 contains the 

correlation coefficients between the two pairs F1-F7 and F2-F8. The correlation coefficients 

indicate that there is little correlation between the local ice loads, which means that the local 

ice loads can be considered as independent if the distance between them is higher than 4~6 m. 

 

 
Figure 5  Sketch of independent local ice loads acting on virtually divided ship hull 

 

The result in Figure 4 indicates that the correlation between measured local loads is 

negligible. As mentioned above, the distance between two adjacent measuring locations is 4 ~ 

6 m, so that 4 m can be used as a conservative value for the parameter defined as 

“characteristic width”. This characteristic width is used to determine the ice-hull contact area 

on which the local ice load is completely independent. The independence might still exist 

within area narrower than 4 m, but 4 m is chosen to exaggerate the simultaneity of local loads 

and the global dynamic ice loads on the hull. Accordingly, the methodology is to virtually 

divide the bow area by widths equal or higher than the characteristic width 4 m (shown in 

Figure 5), and then the ice loads are simulated independently on the virtual local areas. The 

simulation model is developed in the next sections. 

 

 

3.  LOCAL ICE LOAD MODEL IN TIME DOMAIN 

 

As shown in Figure 2 and Figure 3, the basic pattern of the ice loads acting on local areas of 

hull is a series of impulses in time domain. Therefore, the ice load time history can be 

simplified as the model shown in Figure 6. There are three parameters in the model: F denotes 

the magnitude of the load impulse; T denotes the period between two adjacent impulses; TI 

denotes the duration of a single impulse. 

 

 
Figure 6  Idealization of the ice load time history 
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It is obvious that the three parameters in the model of Figure 6 are not deterministic, which is 

mainly attributed to the complexity of ice-hull interaction. It is assumed that the statistical 

characteristics of these parameters keeps stationary, given the ice thickness h and ship cruise 

speed v. In order to study the statistics of the three parameters, all the 33 data events with 

different h and v are analyzed. A program is developed to identify the magnitudes of load 

peaks and the periods between two adjacent peaks, and Figure 7 shows an example of 

identified load peaks from the load time history. 

 

 

Figure 7  Identified peaks in an ice load time history 

 

Ideally, with the simplified model in Figure 6 and statistics of the three parameters, the local 

ice load acting on hull can be simulated and applied on areas limited by characteristic width 4 

m. However, the remaining question is: given the ice conditions and ship speed, how to 

predict the characteristic values (mean value, deviation, etc.) of the three parameters. This is 

discussed as follows. 

 

Figure 8 is a simplified 2D sketch of ice interacting with ship hull, in which Lb is a variable 

defined as “breaking length” of ice sheet, and Vi denotes the relative interacting speed 

between ice and hull. Theoretically, the period T in the model Figure 6 should be proportional 

to Lb / Vi. The period T can be expressed as Eq. (1). 
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Figure 8  Sketch of ice breaking length and interaction speed between ice and ship hull 

 

In reality, the hull segment has 3D geometry and the interaction configuration is more 

complex. There has been research on the breaking length Lb and relative speed Vi (e.g. Wang, 

2001), in which Lb is proportional to hi
3/4

 and also dependent on Vi. In the present model it is 

simplified that Lb is proportional to hi and the dependence on Vi is neglected. The basis of the 
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simplification is mainly the statistical analysis of ice sheet breaking on sloping structure (Qu 

et al., 2006), and more accurate model by e.g. Wang (2001) can be introduced in the future 

improvement. 

 

On the other hand, the relative interacting speed Vi is supposed to be proportional to ship 

cruise speed v. In this simplified model only the condition of ship going forward is 

considered, so that the linear relation between Vi and v only depends on the local locations 

along the hull. Accordingly, Eq. (1) is transformed to Eq. (2). 

vkhT /                                                                       (2) 

As discussed above, the factor k covers the two approximate linear relations ( hLb  and

vVi  ). Naturally, k is a random parameter and the values should be different at different 

locations along the hull, but in this model it is simplified that k follows the same statistical 

characteristics. Considering that the intention of this model is to assess the global dynamic 

response of the ship, using only one statistical distribution of k for all the hull segments will 

exaggerate the global dynamic ice load, and the global dynamic response becomes 

conservative to some extent. 

 

In order to investigate the range of k, the values of T are extracted from all the 33 data events 

with known h and v. The calculated values for k are plotted in the histogram Figure 9, in 

which the ordinate is relative frequency of occurrence. A log-normal distribution function is 

used to fit the probability density of the factor k, which is shown in the curve in Figure 9. 

 

 

Figure 9  Probability distribution of the factor k 

 

The log-normal probability density function (PDF) of the factor k is expressed by Eq. (3). 

Applying this PDF the expected value for the factor k is calculated as E[k] = 7.7 
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Therefore, with the distribution Eq. (3) and the given h and v, a series of values for the period 

T can be simulated using Eq. (2), which are used to generate random ice load time history like 

the model of Figure 6. Another key parameter in the model Figure 6 is the load magnitude F, 

which depends on the inclining angle of hull, bending strength of ice, etc. A lot of efforts have 

been made on this topic (e.g. Kerr, 1975, Kujala, 1994). Since the intention of this simplified 

model is to investigate the resultant dynamic load, which depends on the simultaneity of local 

ice loads, the magnitude of local ice loads F is not the main concern. An approximate method 



is applied here to consider the ice edge as a cantilever beam, as sketched in Figure.8. 

Therefore, the beam has a length of the breaking length Lb and the beam’s width w is assumed 

to be the width of virtual local hull area (characteristic width 4 m or higher). According to the 

theory of cantilever beam undergoing both vertical and horizontal force, the ultimate bending 

strength is estimated as: 
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In which FV denotes the maximum vertical ice force and FH is the maximum horizontal force. 

According to ISO 19906 (2010), the theoretical relation between vertical and horizontal force 

on slopping structure is: 
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In which   is the inclining angle of hull against horizontal, and   is the friction coefficient 

between ice and hull. Substituting Eq. (5) into Eq. (4) the maximum horizontal force FH is: 
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Therefore, Eq. (6) is used here to estimate the load peaks F in Figure 6. It should be noted that 

Eq. (6) is not valid if the angle φ is high, in which case the crushing mode is dominant instead 

of bending. So far the load period T can be simulated using Eq. (2) and load magnitude F can 

be simulated using Eq.(6). It is noted that all the other parameters except k are either given 

(e.g. h, v) or can be determined as a typical value (e.g. ice bending strength σf). The random 

factor k follows the distribution Eq. (3), but it has to be emphasized that there is no statistical 

correlation between T and F, so that the values of k for T and F must be simulated 

independently. 

 

 

Figure 10  An example of ice load peaks duration 

 

There is still another parameter TI in the model Figure 6, which is the duration of one load 

impulse. From the point of dynamic response under ice load like Figure 6, TI has much 

smaller effect than T, because TI has little effect on the frequency distribution of ice load, so 

that the analysis of TI is simplified here. Preliminary analysis of the 33 data events indicates 

that TI has no obvious dependence on T or v or other variables. It is found that TI lies in the 

range of about 0.1 ~ 0.5 seconds, and Figure 10 shows an example of load time history with TI 

≈ 0.1 s. It is assumed here TI is a random parameter which follows uniform distribution from 

0.1 to 0.5 seconds. 



 

As a summary, the methodology of the time domain ice load model is: firstly divide the bow 

area of ship hull into local segments like Figure 5 (the widths w = 4 m or a bit longer, 

depending on the dimension of the hull); and then for each local segment the ice load time 

history is independently simulated using Eq.(2), (3) and (6), the parameter TI is set as a 

random variable following uniform distribution from 0.1 to 0.5; finally all the simulated local 

ice loads are applied along the ship hull to analyze the ship’s dynamic response. 

 

 

4.  SPECTRAL MODEL OF THE ICE LOAD 

 

Because the ice load model shown in Figure 6 is an irregular process which depends on 

several random parameters, it is interesting to investigate the load model in frequency domain. 

A spectral model is developed and described in this section, and all the 33 selected data events 

are used for the analysis. 

 

In each event, firstly the power spectral density (PSD) is calculated for the eight local ice 

loads in the bow area (F1 ~ F8), so the PSD as a function of frequency S(f) is obtained. Figure 

11 shows a typical PSD as a function of frequency (the fluctuating blue curve), and this 

original PSD is averaged to reduce the fluctuation (the smooth red curve). The frequency 

increment of the averaged PSD is 0.37 Hz. 

 

 

Figure 11 An example of original power spectrum density and averaged values 

 

The absolute values of PSD like the example in Figure 11 are dependent on ice load 

magnitude F and period T in Figure 6. In order to eliminate these effects, a linear transform is 

performed to make the PSD function dimensionless, as expressed as follows. 
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In which: 

S  Original power spectral density; 

f  Original frequency vector; 
~

S  Dimensionless power spectral density; 
~

f  Dimensionless frequency vector; 

F  Mean value of the ice load peaks F shown in Figure.6; 

T  Mean value of the ice load periods T shown in Figure.6 



 

Because the transformed PSD function Eq. (7) is dimensionless, ideally it should be the same 

in all the measured data events, but the calculated results are still scattered due to imperfect 

stationary statistical characteristics in the measured data. Figure 12 shows the dimensionless 

PSD values calculated from the 33 events (the dot plots). Due to the symmetry of ship hull, it 

is assumed that F1 and F2 denoted in Figure.1 have the same statistical characteristics, and the 

assumption is similarly valid for the pairs F3-F4, F5-F6 and F7-F8. Eq. (8) is used to fit the 

dimensionless spectra, trying to cover all the spectra data points, and the fitting curves are 

also shown in Figure 12.  
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Eq. (8) includes four fitting parameters (A, B, p, q), and Table 1 lists the values of the four 

parameters for the local ice load pairs. The results indicate that there are slight differences 

among the fitting parameters for the four local load pairs, which are also shown in the red 

curves in Figure 12. However, it seems there is no obvious dependence or trend in the 

differences, so it is recommended that the dimensionless PSD containing the maximum power 

(the integral with respect to dimensionless frequency) is used for all the local hull sections, 

regardless of the local hull geometry. It is found that the parameter set for the load pair F7-F8 

leads to the maximum power of dimensionless PSD. 

 

 

(a) 

 

(b) 



 

(c) 

 

(d) 

Figure 12  Dimensionless PSD and fitting results for the four local ice load pairs. (a) pair F1-

F2; (b) pair F3-F4; (c) pair F5-F6; (d) pair F7-F8. 

 

Table 1  The fitting parameters for the four local ice load pairs 

Parameters in Eq. (8) A B p q 

F1-F2 

F3-F4 

F5-F6 

F7-F8 

20 

20 

23 

20 

5.4 

5.1 

5.0 

5.0 

3.5 

3.5 

4.0 

3.5 

0.6 

0.6 

0.6 

0.5 

 

Therefore, Eq. (8) with parameters A = 20, B = 5, p = 3.5 and q = 0.5 is recommended as the 

dimensionless PSD function. In order to obtain the real PSD function S(f), the inverse 

transform of Eq. (7) is needed, in which the two parameters F  and T  are calculated using 

Eq. (6), Eq. (2) and the expected value E[k] = 7.7 according to Eq. (3).  In summary, the 

spectral model )(
~~

fS  or S(f) is equivalent to the time-domain load model described in the last 

section, and it shows the load’s energy distribution in frequency domain. 

 

 

CONCLUSIONS AND FUTURE IMPROVEMENT 

 

The intention of this paper is to develop a simplified model enabling engineers to assess the 

global dynamic response of a ship going through level ice sheet. The measured data from a 

full scale ship is analyzed and the following simplifications are made: 

 



1) The ice loads acting on the characteristic width 4 m on the hull is assumed to fluctuate 

simultaneously; 

2) The local breaking length of ice sheet is approximated as proportional to ice thickness; 

3) The periods of local ice loads follows one statistical distribution, which is proportional 

to the ratio between ice thickness and ship cruise speed. 

 

The consequence of these simplifications is that the simultaneity of local loads is exaggerated 

and the resultant global dynamic response is conservative. As mentioned in the paper, many 

existing models can be introduced to improve the accuracy of the parameters in the model, 

which capture the spatial variation along the hull: the effect of local hull geometry, the effect 

of ship speed, and the effect of relative moving direction of ship, etc. 
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