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ABSTRACT 

 

In ISO 19906, the saw-tooth load function is proposed to predict the ice induced frequency 

lock-in vibration mode (abbreviated as FLI in this paper) on fixed vertical structures. There 

are still uncertainties about the parameters in the load function. The present paper attempts to 

perform the following analyses: 1) Relative phase analysis in time domain. This analysis takes 

“snapshots” along the time history, and finds out all the possible relative phases between ice 

load and structure’s instant displacement. The intention is twofold: to identify the maximum 

and minimum values of relative velocity between ice edge and structure, and to develop an 

approximate relation between dynamic ice load amplitude and structure response; 2) Based on 

the presupposition that the strain rate in ice dominates the occurrence of FLI, an approximate 

method of estimating the highest ice velocity triggering FLI is developed; 3) Based on the 

hypothesis that the rate of crushing ice load is proportional to the stress rate in ice sample 

compression test, an approach is proposed to estimate the possible load amplitude in the saw-

tooth function. Several examples are presented to validate the methods in this paper against 

the full scale observations. 

 

 

1.  INTRODUCTION 

 

The newly published ISO 19906 standard (Petroleum and natural gas industries - Arctic 

offshore structures) provides extremely helpful information for the engineers who need to 

design structures in the ice covered waters. In spite of this, there are quite a number of 

remaining uncertainties in the methods proposed in the standard, and the subject of ice 

induced FLI (frequency lock-in) on fixed vertical structures is one typical example. FLI is a 

very adverse phenomenon in which the fluctuating frequency of ice load is “locked” by the 

structural vibration similar with resonance. Based on many full scale and model tests studying 

ice-structure interaction, ISO 19906 proposes: 1) A criterion to evaluate the susceptibility to 

FLI of a given structure; 2) An empirical equation to estimate the ice velocity which triggers 

FLI; 3) A time-domain ice load function which is used to analyse structure’s dynamic 

response under FLI scenario. The methodology in ISO 19906 is based on the updated 

academic knowledge, but there are still uncertainties lying in several key parameters, which 

might confuse the designers who have limited knowledge in this field. These are discussed 

briefly as follows. 

 

In ISO 19906, the basis for the criterion of susceptibility of FLI is that ice load F tends to 

decrease with increasing ice-structure relative velocity Vr, i.e. the negative slope in the 

function F(Vr) (Määttänen, 1978, 1998). The main uncertainty of the criterion lies in the 
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empirical coefficient θ which is derived from this negative slope. A constant value is 

suggested for the coefficient θ in ISO 19906, and applying the criterion is found as acceptable 

(Guo, 2012). However, the hypothesis of the negative slope and the value of θ are still being 

questioned (e.g., Fransson, 2004), which remains an open topic. 

 

The empirical equation to estimate the ice velocity causing FLI is developed according to a 

set of FLI events from different structures, and the maximum value of this ice velocity is 

believed to be proportional to structure’s natural frequency (Kärnä, 2006). The prediction 

using this empirical equation covers all the observed ice velocities triggering FLI. However at 

later stage, it is found that this equation results in physically unreasonable result (Cammaert et 

al., 2011). 

 

Based on the ice load time series recorded using load panels, the triangular time-domain load 

function is adopted in ISO 19906, which is proposed to represent the dynamic ice load which 

causes FLI. A few parameters are required to determine the ice load time history, in which the 

parameter q determines the ratio between dynamic portion of load and the maximum load. 

According to the rough estimation of load data, q is found in the range 0.1 to 0.5. It is stated 

in ISO 19906 that the maximum value qmax = 0.5 can be used to capture the maximum 

dynamic response, but there is no supportive research behind this value. 

 

In this paper, the uncertainties mentioned above are further investigated, and the effort is 

made to propose approaches of estimating the key parameters better. 

 

 

2.  THE ICE-STRUCTURE RELATIVE VELOCITY 

 

In this section, phase analysis in time domain is performed using the theory in structure 

dynamics of multi-degree-of-freedom (MDoF) system. One of the intentions is to determine 

the range of ice-structure relative velocity under FLI. Some of the results will be used in the 

later sections. 

 

 
Figure.1  Multi-degree-of-freedom system of a structure with 1

st
 order eigen mode 

 

The MDoF system of the structure is shown in Figure.1, in which the vertical dashed line 

represents the structure’s position without any external loading, and the solid curve shows the 

shape of the 1
st
 order eigen mode. The amplitudes of the eigen mode at different elevations 

are denoted as ϕn1, ϕn2 … etc. The dynamic equation of the structure is 
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FKXXCXM 
...

                                                       (1) 

According to structure dynamics, the vector of structure displacement X can be expressed by 

uX                                                                     (2) 

In which is the matrix Φ consists of all the eigen modes, and u is a vector having the same 

dimension of X, and it represents the relative contribution of all the eigen modes to the total 

displacement X. Substituting Eq. (2) into Eq. (1), and the dynamic equation is multiplied by 

Φ
T
, the following transformed equation is obtained. 

FuKuCuM T

rrr 
...

                                                      (3) 

Because of orthogonal characteristic, Mr and Kr are both diagonal matrices. Assuming that the 

damping matrix Cr is also in diagonal form, Eq. (1) is completely uncoupled and Eq. (3) is a 

series of independent equations. Ideally, it is supposed that only one eigen mode of the 

structure is excited (or only one eigen mode is dominant), the structure’s vibration follows this 

eigen mode and u becomes a quantity instead of a vector. If the eigen mode is mass-

normalized, and considering that the ice load only acts on the node at water level (as shown in 

Figure.1), the dynamic equation at ice loading point is simplified as 

)(44
22

...

tFufufu ncnnn                                               (4) 

The solution of Eq. (4) is a “transformed” or so called generalized displacement u at ice 

loading level, and the real displacement x at ice loading level is obtained by Eq. (2). 

Regardless of the physical mechanism of ice load F(t), the triangular saw-tooth function as 

proposed in ISO19906 is used as F(t) (as shown in Figure.2). Substituting typical values for 

the parameters (e.g., damping ratio 05.0~005.0n , natural frequency Hzfn 5~1 , mass-

normalized eigen mode at ice loading level 
34 10~10 nc ) into Eq.(4), the generalized 

displacement u can be obtained by numerical method (e.g. Newmark method). The objective 

of this analysis is to find out the phase shift between ice load and structure response. A typical 

example is shown in Figure.3. 

 

 
Figure.2  The saw-tooth ice load function proposed in ISO 19906 for analysing FLI 

 

A number of numerical tests similar to Figure.3 are obtained, with changing parameters in Eq. 

(4). It is found that the phase shift only depends on the damping ratio n  and the shape of the 

load time series, i.e. the parameter τc in Figure.2. The analysis indicates that the phase shift is 

close to π (i.e. half of a complete cycle) and it changes with different n  and the shape factor 

τc. On the other hand, ice load measurement shows that sometimes the shape of load time 



series is closer to harmonic instead of triangle. If this is the case, it is found that the phase 

shift in Figure.3 is close to π/2 and it changes with different n  as well.  

 

 
Figure.3  A typical example of the solution of Eq.(4), showing the relative phase shift between 

ice load and structure response (X = ϕnc u) 

 

In the example in Figure.3, the structure experiences the maximum and minimum velocity 

during the period of loading phase in ice load F. Therefore, the upper and lower bound of ice-

structure relative velocity are expressed as 









strir

strir

VVV

VVV

min,

max,
                                                             (5) 

In which Vi is the constant ice velocity, and Vstr is the amplitude of structure velocity at ice 

loading level. In summary, the relative phase shift between ice load and structure response 

might change around the range π/2 ~ π, and the relative velocity can be in the range shown by 

Eq.(5) which will be used in the later section. 

 

 

3.  SIMPLE RELATION BETWEEN LOAD AND RESPONSE 

 

In ISO 19906, the basis of the susceptibility of FLI is the relation between total structural 

damping and the “negative damping effect” caused by the ice load. From the point of energy 

exchange, the FLI is maintained if input energy from ice equals the energy dissipated by 

damping. In other words, the work done by the ice load in one complete vibration cycle is just 

dissipated by the damping. The numerical results in the section above are used here to analyse 

the energy exchange, which is discussed as follows. 

 

Using the numerical results like the example in Figure.3, the input energy from the ice load in 

one complete cycle can be expressed as a function of AF  . Naturally, this calculated input 

energy changes with different phase shifts, which are due to different load shape factors τc and 

damping ratios. 

 

According to the transformation Eq. (2), replacing the amplitude of X by uncAA  , Au is the 

amplitude of generalized displacement u, the input energy by ice load in one vibration cycle is 

uncin FAw   . The dimensionless coefficient λ indicates the effect of different relative 

phase shifts. The numerical tests indicate that λ is usually higher than 1.0 and it might reach 



1.6 in some cases. If the structure response is considered as harmonic approximately, i.e. X = 

Asin(ωt), the energy dissipation by the damping in one vibration cycle can be estimated by 

integral of the work done by viscous damping force, which is expressed as: 

              





Tt

out dXXCw
~0

)(          
2223 18 unnnout Afw    (6) 

in which the interval of integral is t = 0 ~ T, and T is the natural period of structure 

considering damping effect. Because it is expected that the input and dissipated energy are the 

same, so that 

uncunnn FAAf  
2223 18                                                (7) 

Considering the relation between the two amplitudes  

unc AA                                                                       (8) 

So that the amplitude of structure displacement at ice loading level under saw-tooth ice load 

can be approximately expressed as 
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With Eq.(9) and the maximum value λmax = 1.6, the amplitude of structure displacement can 

be estimated. Table.1 lists a simple example of calculation, including the inputs and result. 

 

Table.1  An example of estimating the structure response using Eq.(9) 

Parameter and unit Value 

λmax 

nc  

ΔF (MN) 

ζn 

fn (Hz) 

 

A (m) 

1.6 

10
-4

 

1.0 

0.03 

2.0 

 

0.05 

 

It is noted that all the parameters in the right hand side of Eq. (9) are relatively easy to 

determine except ΔF, which is the critical quantity in the ice load function. An approach is 

proposed to estimate this parameter in the next section. 

 

 

4.  THE AMPLITUDE OF DYNAMIC ICE LOAD 

 

The dynamic portion of ice load ΔF is expressed by qFmax in ISO 19906 or αFmax in Figure.2 

in this paper. Given the maximum ice load Fmax determined by the equation in ISO 19906 (or 

other standards), the dimensionless factor q or α will be investigated in this section. 

 

As shown in Figure.3, one cycle of ice load variation is divided into two phases: loading 

phase and unloading phase. As shown in the 2D sketch of Figure.4, assuming the ice edge 

contacting vertical structure keeps instant without any major failure during the loading phase, 



the ice edge can be approximated as a big ice sample being compressed, but naturally the 

compressive stress in ice is not uniformly distributed. 

 

 
Figure.4  Sketch of ice edge contacting cylinder structure and imaginary stress distribution 

 

It is found that the occurrence of the three ice load modes on vertical structures (intermittent 

crushing, FLI and continuous crushing) is dominated by the strain rate in ice, and FLI takes 

place when the strain rate in the range of ductile-brittle transition (Yue et al., 2009). Therefore, 

the dynamic portion of ice load might be estimated by the following equation. 

loadingT
t

IDhF






                                                     (10) 

In which D is structure diameter and h is ice thickness. Δσ/Δt is a “representative” stress rate. 

Because the compressive stress is not uniformly distributed as shown in Figure.4, the term 

Δσ/Δt is the maximum stress rate at the location on the symmetrical axis. Tloading represents 

the duration of the loading phase, as shown in Figure.3, so that the term (Δσ/Δt) Tloading is the 

stress accumulated on the symmetrical axis during the loading phase. By introducing a scaling 

factor I which considers the non-uniform stress distribution along the half cylinder, the stress 

accumulation on the structure surface is summed up to obtain ΔF as expressed in Eq.(10). 

 

Under the presupposition that the strain rate 
.

  in ice keeps in the range of ductile-brittle 

transition, and assuming the Young’s modulus E keeps more or less constant during loading 

process, Eq.(10) can be transformed into the form of Eq.(11). 

loadingTIDhEF
.

                                                     (11) 

On the other hand, the maximum ice load acting on vertical structure can be expressed as Fmax 

= Dhpmax, in which pmax is the nominal maximum pressure on the structure. Therefore, the 

ratio α = ΔF / Fmax can be expressed as Eq.(12). 

loadingT
p

E
I

.

max

                                                          (12) 

The right hand side of Eq. (12) includes several parameters which can be considered as 

deterministic, while the others are more probabilistic. For example, the scaling factor I 

accounts for the non-uniform stress distribution sketched in Figure.4, although the magnitude 

of I is unknown, it is certainly lower than 1.0, probably around 0.5. Tloading can be determined 

as a portion of the natural period of structure as shown in Figure.2, and the coefficient τc falls 

in the range of 0.5 ~ 0.9 according to ISO 19906. It is commonly known that the ductile-

brittle transition range is around 134
.

10~10  s (Sanderson, 1988, Timco, 2010), which can 

Imaginary stress distribution 

Extent of compression area 



be used in Eq. (12). The maximum nominal pressure pmax includes some uncertainties, which 

needs to be determined by the designer, and the equation in ISO 19906 can be one option. The 

Young’s modulus E is another probabilistic parameter with typical range of 1 ~ 3 GPa. 

 

 
Figure.5  Examples of the ratio α calculated by Eq.(12) 

 

Figure.5 shows a set of estimated values of the ratio α under different given inputs. As 

mentioned above, the Young’s modulus E depends on the ice quality and pmax depends on ice 

load equation being used. These two parameters are the main uncertainties and probabilistic 

models should be applied on them. 

 

 

5.  THE ICE VELOCITY TRIGGERING FLI 

 

The physical mechanism of FLI indicates that the different strain rate in ice dominates the 

three dynamic crushing load patterns (Yue et al, 2009, 2012), but strain rate is a difficult 

variable for the engineers to deal with. Ideally, it’s better to link the strain rate to the ice 

velocity range which causes FLI, so the designers know what ice velocities might trigger FLI 

for a given structure. According to field observation, crushing ice load appears intermittent 

pattern under very low ice velocity, and might enter the dangerous FLI zone when the ice 

velocity increases, finally, the FLI can’t be maintained when ice velocity becomes higher, 

which is continuous crushing. The key question is: what is the highest ice velocity which is 

able to cause FLI. 

 

Kärnä (1990, 2001) developed a model to predict this “boundary” between FLI and 

continuous crushing. ISO 19906 adopted the methodology by Kärnä (2006) and proposes that 

this “boundary” velocity is proportional to structure’s natural frequency. This linear relation is 

based on the fitting of the data events from 14 different tests, which are reported as FLI 

scenarios. The relation in ISO 19906 provides acceptable result if the structure’s fundamental 

natural frequency is lower than 5 Hz, however, it is found later that this empirical relation 

results in physically incorrect conclusion (Cammaert, et al., 2011). In other words, the relation 

is not generic. 

 

In this section, the effort is made to develop a generic criterion to estimate the highest ice 

velocity triggering FLI, and the starting point is the physical mechanism of FLI. According to 

the physical mechanism, FLI is achieved only if the strain rate in ice keeps within ductile-

brittle transition zone during the loading phase of ice load (Yue et al, 2012). In other words, 



the monotonous increasing during loading phase will collapse if the strain rate becomes too 

high which results in brittle failure of ice. 

 

The relation between strain rate in ice and other variables has been studied since 1970’s (e.g. 

Michel et al., 1977, Ralston, 1979, Palmer et al., 1983). Due to the complex 3D indentation 

between vertical structure and thick ice, strain rate is believed as a function of relative 

velocity Vr, structure width D and ice thickness h. Obviously, the strain rate is spatially 

dependent, and it drops down rapidly at the locations a little far away from the ice-structure 

interaction surface. Despite the spatial difference of strain rate, most of the previous research 

tried to use the variables (e.g. Vr, D, h) to predict an effective or a “representative” strain rate, 

which is at the same magnitude order as the maximum strain rate on the ice-structure 

interaction surface. This is because it is the strain rate in the thin ice layer close to structure 

that dominates the loading, and the crushed thin ice layer has been observed in field test 

(Bjerkas, 2005). 

 

In this paper, a simple scenario is focused in which the ice is relatively thin compared with 

structure width, i.e. the aspect ratio D/h is high. In this case, the structure’s indentation to ice 

sheet can be approximated as plane stress state, and the stress or strain can be considered 

constant in the vertical direction along ice thickness. Therefore, the effective strain rate 
.

  is a 

function of only relative velocity Vr and structure width D. There are different simple 

equations to express ),(
.

DVr  (e.g. Michel et al., 1977, Ralston, 1979, Palmer et al., 1983), 

and the following equation is used in this paper.  

D

Vr
eq

8.1

.

                                                                   (13) 

The derivation of Eq. (13) is described in (Yue et al., 2012), and the basic approach is as 

follows: the ice sheet is simplified as a 2D linear elastic sheet, which has a pre-cut solid half-

circle on the edge to represent the cylinder structure. The ice sheet is meshed with finite 

elements and compressed against the solid half-circle edge. This simple simulation shows that 

the maximum strain rate on the ice-structure contact surface is about Vr / (1.8D). Accordingly, 

Eq. (13) is used to estimate the effective strain rate, because the strain rate at anywhere in ice 

will never exceed the upper boundary of FLI if the maximum strain rate in Eq. (13) keeps 

under the boundary. It is emphasized that Eq. (13) might be questioned, and it is used here 

just to demonstrate the methodology. 

 

As mentioned above, according to ice mechanics, the upper bound of strain rate for ductile-

brittle transition zone is about 10
-3

 in the uniaxial compression condition. Naturally this upper 

bound might increase under the confined stress condition like ice-vertical structure 

indentation. On the other hand, the upper bound might change because of ice properties, e.g. 

if ice salinity or ice temperature becomes higher, the upper bound of strain rate might shift 

upwards. An arbitrary estimate of 10
-2

 is adopted in this paper, which represents the upper 

bound of strain rate for ductile-brittle transition zone under confined stress condition. 

 

According to the phase analysis in time domain discussed above, the maximum and minimum 

relative velocity are expressed by Eq. (5). Many test results confirmed that Vstr almost equals 

Vi during FLI (Kärnä, 2006), and this conclusion is also adopted in ISO 19906. Therefore, the 

maximum relative velocity becomes Vr,max = 2 Vi. Substituting this expression into Eq. (13), 

the ice velocity is: 



.

9.0 eqi DV                                                              (14) 

Finally, Eq. (14) can be used to estimate the maximum ice velocity triggering FLI, 

considering the arbitrarily defined upper bound 2
.

10eq . In order to test the applicability of 

Eq. (14), several full scale structures under FLI are used as comparison, and the results are 

listed in Table.2. 

 

Table.2  Examples of applying Eq.(14) and comparison with field observations 

Structure D (m) Vi (cm/s) Comments 

Norströmsgrund 

Lighthouse with load 

panels 

 

Jacket platform 

The Bohai Sea 

 

Sakhalin II platform 

(Clarke et al., 2005) 

 

7.5 

 

 

1.5 

 

 

≈15~20 

 

6.75 

 

 

1.35 

 

 

13.5~18 

 

Agrees well with Table.5 in (Kärnä, 2006) 

 

 

Agrees well with Table.5 in (Kärnä, 2006) 

 

 

It is reported that the ice velocity of FLI 

can be much higher than the two structures 

above. 

 

As shown in Table.2, although Eq.(14) provides reasonable results, the uncertainties still 

remain: firstly, Eq. (13) may not be valid under lower aspect ratio D/h; secondly, the effective 

strain rate’s upper bound for ductile-brittle transition may not be 10
-2

 in the confined 

compression state, which needs to be investigated further. Despite these uncertainties, the 

simple Eq. (14) predicts the same trend found in field observations: experience from the 

lighthouse Norströmsgrund indicates that warmer ice (around 0ºC or even higher) is still able 

to cause FLI under high ice velocity (Bjerkås, 2005). The physical reason is: if the ice 

temperature increases, the strain rate’s range for ductile-brittle transition will shift upwards, 

leading to higher ice velocity triggering FLI. 

 

 

CONCLUSIONS AND DISCUSSIONS 

 

The ice induced frequency lock-in vibration mode (FLI) on fixed vertical structure is a very 

harmful scenario. ISO 19906 proposes: 1) the criterion equations to judge the conditions of 

FLI occurring, 2) the ice load function in time domain to predict structure response of FLI, 

but there are still several obvious quantitative uncertainties in the methods. The present paper 

tries to develop a generic approach to reduce these uncertainties, and the intention is to link 

the physical mechanism of FLI to the parameters such as ice velocity, structure width, ice 

properties which are more familiar for the designers. 

 

An approach is developed to estimate the highest ice velocity causing FLI, given the structure 

and ice properties; a simple equation is developed to estimate the structure response under 

FLI, given the dynamic portion of ice load; an approach is proposed to predict the possible 

range of dynamic ice load, given the structure and ice properties. 

 

The methods and approaches developed in the present paper are in deterministic form, but the 

inherent uncertainties on ice properties still exist. These methods are proposed as the starting 



point when designing a structure against FLI. Naturally, more observations from full scale 

conditions are helpful to validate the methods in the present paper. 
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